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ABSTRACT

The mechanisms and impact of correlated, or synchronous, firing among pairs
and groups of neurons is under intense investigation throughout the nervous
system. A ubiquitous circuit feature that can give rise to such correlations
consists of overlapping, or common, inputs to pairs and populations of cells,
leading to common spike train responses. Here, we use computational tools to
study how the transfer of common input currents into common spike outputs
is modulated by the physiology of the recipient cells. We focus on a key
conductance — g4, for the A-type potassium current — which drives neurons
between “Type 11”7 excitability (low g4), and “Type I” excitability (high g4).
Regardless of g4, cells transform common input fluctuations into a ten-
dency to spike nearly simultaneously. However, this process is more pro-
nounced at low g4 values, as previously predicted by reduced “phase” mod-
els. Thus, for a given level of common input, Type II neurons produce spikes
that are relatively more correlated over short time scales. Over long time
scales, the trend reverses, with Type II neurons producing relatively [ess
correlated spike trains. This is because these cells’ increased tendency for
simultaneous spiking is balanced by opposing tendencies at larger time lags.
We demonstrate a novel implication for neural signal processing: downstream
cells with long time constants are selectively driven by Type I cell populations
upstream, and those with short time constants by Type II cell populations.
Our results are established via high-throughput numerical simulations, and
explained via the cells’ filtering properties and nonlinear dynamics.

INTRODUCTION

Neurons throughout the nervous system — from the retina (Shlens et al.,
2008)), thalamus (e.g., (Alonso et al., 1996))), and cortex (e.g., (Zohary et al.,
1994))) to motoneurons (Binder and Powers, 2001) — show temporal corre-
lation between the discharge times of their spikes. This correlated spiking
can impact sensory discrimination (Averbeck et al., 2006) and signal propa-
gation (Salinas and Sejnowski, 2000).

How do these correlations arise? We study a simple mechanism in which
the inputs to a pair or population of neurons has a common component that
is shared across multiple cells (Figure . On an anatomical level, the large
number of divergent connections that span layers and areas makes shared
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Fig. 1. Shared input microcircuit, in which two neurons receive input cur-
rents with a common component that represents correlated activity
or shared afferents upstream. Each neuron is a single-compartment
Connor-Stevens model (see Methods), with a maximal A-current con-
ductance g4 that we vary, eliciting a full range of Type I to Type II
spiking dynamics. Shared input currents lead to correlated spikes,
which are quantified as shown via spike counts ni, ny over sliding
time windows of length 7. The input currents received by each cell
have mean p and fluctuate with total variance o?; the common noise is
chosen with variance co?, and independent noise terms with variance
(1—rc)o>.

afferents to pairs of nearby cells unavoidable (Shadlen and Newsome, 1998).
Correlated spiking in areas upstream from the target cells can add to this
anatomical factor. In fact, for some neural circuits, shared inputs are them-
selves the dominant source of correlated spiking (Trong and Rieke, 2008). In
general, correlating effects of shared input interact with effects of recurrent
coupling (cf. (Ostojic et al., 2009))).

What makes shared input circuitry especially interesting is the pivotal
role of spike generating dynamics. For a given fraction of shared input, these
dynamics control the fraction of shared output — that is, the fraction of
spikes that will be shared across the two cells. This correlation transfer
depends on two factors. The first is the mechanism of spike generation. The
second is the operating point of the neurons (i.e., their rate and variability of
firing (Binder and Powers, 2001} |de la Rocha et al., 2007))). Excepting Hong
and De Schutter (2008), studies of correlation transfer have mostly focused
on simplified neuron models, such as integrate-and-fire, phase, or threshold
crossing systems, leaving open allied questions for models with more complex



subthreshold and after-spike dynamics.

Here, we study correlation transfer for a family of conductance-based neu-
ron models that varies from Type I excitability, in which firing can occur at
arbitrarily low rates in response to a DC current (as for cortical pyramidal
cells), to Type II excitability, in which firing occurs at a nonzero “onset” rate
(as for fast-spiking interneurons or the Hodgkin-Huxley model) (Rinzel and
Ermentrout, 1998} [Hodgkin, 1948)). We use the Connor-Stevens model (Con-
nor and Stevens, 1971)), which transitions between Type I and Type II as g4
— the maximal conductance of the A-type potassium current — is varied (see
Fig. . Beyond firing rates, Type I vs. Type II neurons differ in single-cell
computation (Ermentrout et al., 2007)) and synchronization under reciprocal
coupling (Rinzel and Ermentrout, 1998]).

We test the hypothesis — based on predictions from simplified “normal
form” phase models (Barreiro et al., 2010; Marella and Ermentrout, 2008;
Galén et al., 2007) — that the Type I to Type II transition will produce
strong differences in levels and time scales of correlation transfer. Upon find-
ing a positive result, and explaining it via the filtering properties of individual
neurons, we ask how the distinct features of correlated spiking in Type I vs.
Type II neurons manifest in signal transmission through feedforward neural
circuits. Preliminary versions of some findings have appeared in abstract
form (Barreiro, 2009; Shea-Brown et al., 2009).

METHODS

Circuit setup

We primarily consider the feedforward circuit of Figure [I} Here, each of two
neurons receives two sources of fluctuating current: a common, or “shared”
source I, = 0+/c&.(t), and a “private” source I} = ov/1—c&(t) or I =
ov1 —c&(t). Each of these inputs is chosen to be a scaled statistically
independent, Gaussian white noise process (uncorrelated in time) — that is,
(&€t + 1)) = () for i = 1,2,¢. This is for simplicity and agreement
with prior studies of correlated spiking (Lindner et al., 2005; |de la Rocha et
al., 2007; [Shea-Brown et al., 2008; Marella and Ermentrout, 2008; |Vilela and
Lindner, 2009; Barreiro et al., 2010). The common current /. has variance
o?c; each private current has zero mean and variance 0%(1 — ¢). Note that

these scalings are chosen so that the total variance of current injected into



each cell is always o2, while the parameter c gives the fraction of this variance
that arises from common input sources. For example, when ¢ = 0.5, 50% of
each neuron’s presynaptic inputs come from the shared and 50% from the
independent input. Finally, the mean of the total current received by each
cell is given by u. This term represents the total bias toward negative or
positive currents from all sources; in Fig. [I] it is illustrated as part of the
common input for simplicity.
The combined currents,

]app,i(t) = p+ L(t) + L(t)

= ptoveet) + oI = c&i(t)

(1 = 1,2) are injected into identical single-compartment, conductance-based
membrane models (see Methods, “Neuron model”); spike times are identified
from the resulting voltage trace.

Neuron model

We investigate correlation transfer in the Connor-Stevens model, which was
designed to capture the low firing rates of a crab motor axon (Connor and
Stevens, 1971; Connor et al., 1977). This model adds a transient potassium
current, or A-current, to sodium and delayed-rectifier potassium currents of
Hodgkin-Huxley type. The A-Type channel provides extended after-spike hy-
perpolarization currents, which lead to arbitrarily low firing rates and hence
Type I excitability (see Introduction and Methods, “Characterizing the dy-
namics of spike generation,” below).
The voltage equation is

av
Cyu— = —g(V — EL) — gnam®h(V — Exa) — gxn(V — Ex) (1)

dt
- gAASB(V - EK) + Iap;m

The gating variables m, n, h, A, and B each evolve according to the standard
voltage-gated kinetics; e.g., for m:

dm — me(V)—m

dt (V) @)

where mq. (V') is the steady-state value and 7,,(V) is the (voltage-dependent)
time constant. All equations and parameters are exactly as specified as in
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Fig. 2: Firing rate vs. injected current (f — I) curves, for the deterministic
(¢ = 0) Connor-Stevens model. Several values of g4, yielding a range
from Type II to Type I excitability, are shown — note the nonzero
“onset” firing rates and Type II excitability for g4 ~ 0 mS/cm?, zero
onset rate and Type I excitability for g4 ~ 60 mS/cm?, and a grad-
ual transition between. Insets show cartoons of dynamical transitions
that lead to non-zero vs. zero onset rates: a subcritical Hopf bifurca-
tion (left) and a saddle-node on invariant circle bifurcation (right).
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\Connor et al. (1977), with the exception that we vary the maximal A-current
conductance, g4, over the range of values reported below. As g4 is decreased
from the value set by |Connor et al. (1977), the neuron transitions from Type
I to Type II excitability; we describe this phenomenon next.




Measuring spike train correlation

We represent the output spike trains as sequences of impulses y; () = >, §(t—
tk), where t¥ is the time of the kth spike of the ith neuron. The firing
rate of the ith cell, (y;(t)), is denoted v;. To quantify correlation over a
given time scale T', we compute the Pearson’s correlation coefficient of spike
counts over a time window of length 7' (as in, e.g., (Zohary et al., 1994;
Bair et al., 2001))):

_ Cov(ny, ng)
\/Var(ny)y/Var(ny)

where ny, ny are the numbers of spikes simultaneously output by neurons 1
and 2 respectively in a time window of length T’ i.e. n;(t) = :+T yi(s) ds.
If pr is measured at values of T that are less than a typical inter-spike
interval (IST), we are essentially measuring the degree of synchrony between
individual spikes. For larger T' values, pr assesses total correlation between
numbers of spikes emitted by each cell.

A short calculation (cf. (Bair et al., 2001; (Cox and Lewis, 1966))) shows

that Cov(ni,ng) is

Pr

T T — |t
COV(nl,ng) = T/ 012(25) T|‘
-T

dt (3)

where the spike train cross-covariance Ci2(7) = (y1(t)y2(t + 7)) — v4v5. Sim-
ilarly, the variance Var(n;) can be given in terms of the spike train auto-
covariance function. The autocovariance function of neuron 1, defined as
A (1) = (yi ()1 (t + 7)) — V2, satisfies

T J—
Var(ni) — T/ Al(t)TTm it |

-T

and similarly for neuron 2.

Characterizing the dynamics of spike generation

We give a brief discussion of spike-generation dynamics in the Connor-Stevens
system. We organize this by focusing on how the neurons transition from
quiescent (i.e., rest) behavior to periodic spiking in response to constant,
noiseless (DC) current (i.e., when fluctuation terms ¢ = 0). While these



results are well-established (Rush and Rinzel, 1995) we review critical aspects
that will help us understand how correlated spiking arises in the circuit of
Fig. [1]

For any value of g4, there is a critical value of the DC current, u =
Iif(ga), such that the neuron has a stable stationary state — that is, it re-
mains at a resting voltage — if u < Ip;if(ga). If £ > I;r(ga), then the neuron
instead spikes periodically. We refer to these two regimes as subthreshold and
superthreshold respectively. If the current p is ramped slowly from a sub-
threshold value, the membrane potential will shift slowly until p = I;r(ga),
at which point periodic spikes begin; the rate continues to increase with p
over some range, as quantified by familiar firing rate-current (f — I) curves
(Fig. [2).

As discussed above, neurons are often classified as Type I vs. Type II
based on whether their f — I curves are continuous vs. discontinuous (with
a jump) at p = I;;. Figure [2{shows that the Connor-Stevens model is Type
IT for g4 &~ 0 mS/cm?, Type I for g4 ~ 60 mS/cm?, and displays a gradual
transition in between. This qualitative shift in behavior is related to the un-
derlying model (Equations through bifurcation theory (Izhikevich, 2007;
Rinzel and Ermentrout, 1998]). The key fact is that all possible changes from
resting to periodic spiking behavior fall into a few qualitatively equivalent
categories of bifurcation. We next describe two of these categories that we
will put to use below.

In a saddle-node on invariant circle (SNIC) bifurcation, the stable resting
state merges with an unstable resting state to create a single steady state
precisely when g = Iy;ir(ga). A solution to Equations that begins near
this steady state can return to it, via an excursion through state space that
traces out a spike. This spiking trajectory persists for p > Ip;;. However,
due to the steady states at nearby values of u, spiking trajectories take a
long time to return to where they started — technically an infinite amount
of time when p = Iyp(ga); see the righthand schematic in Figure 2l As
a result, the firing rate for p near Iy;r(ga) is arbitrarily low, resulting in a
continuous f — I curve and Type I excitability.

In a subcritical Hopf bifurcation, by contrast, the stable resting state
instead loses stability as an unstable periodic orbit shrinks into this point.
For neural systems, there is typically also a stable periodic orbit in the state
space. Once the resting state becomes unstable, trajectories quickly diverge
from the resting state to the stable periodic orbit, which has a non-zero
frequency fi;r; see the lefthand schematic in Figure This results in a



discontinuous f — I curve that jumps from zero (at rest) to fyr at Inif(ga)
— the characteristic of Type II excitability.

We use software tools to automate the bifurcation analysis of the Connor-
Stevens model: specifically XPP (Ermentrout, 2002), and MatCont (Dhooge
et al., 2003). This allows us to track fixed points and limit cycles as system
parameters g4, p vary, and to check the mathematical conditions that define
bifurcation types (Guckenheimer and Holmes, 1983).

Linking linear response theory, spike-triggered averages,
and spike count correlations

When the variance c of the shared input is small (see Fig. , then we can treat
the circuit with a shared input as a perturbation from two independently
firing neurons. We describe this perturbation via linear response theory
(Lindner et al., 2005; de la Rocha et al., 2007; |Ostojic et al., 2009; Ostojic
and Brunel, 2011)), which is related to classical Linear-Poisson (LP) models
of neural spiking (Perkel et al., 1967). That is, we make the assumption that
the change in a neuron’s instantaneous firing rate v;(t) due to the shared input
signal can be represented by linearly filtering the common (perturbing) input
I.:

vi(t) = (wi(®)]1e)
= W+ K(s)I.(t —s)ds
= st (K L)) (@

where the filter K (t) = 0 for ¢ < 0 (causality) and v; ¢ is the “background”
average firing rate of the independently firing neuron.

Eqn. is extremely useful, because it isolates the common component of
the response of neurons ¢ = 1 and ¢ = 2, which is an enhanced (or depressed)
tendency to emit spikes, at a rate determined by the filtered, common input.
As a result, the cross-covariance function,

Cia(1) = ((n(t) —vo1)(valt +7) — vo2))

becomes

Coo(r) — /OOO _OOK(s)K(err)(IC(t—s)Ic(t—s+T—r)>drds
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This simplifies: because we assume I.. is white (uncorrelated in time), (I.(t).(t+
7)) = Var(I.)d(7). Var(l.) is the instantaneous variance of the noisy process
(here assumed to be constant), so that

Cio(T) = Var(/, / K(s)K(s+T)ds
= Var(l.)( )(7‘) (5)

where K (t) = K(—t); cf. (Ostojic et al., 2009).

Thus, the cross-covariance between our two spike trains has a simple
expression in terms of the filter with which neurons process the common
input into a firing rate. It remains only to identify this filter K (¢). As in
classical cases, this is precisely given by a spike triggered average (Gabbiani
and Koch, 1998)). Different from the classical setting, but as in |Ostojic et
al. (2009), it is only the common component of the input current that is
averaged in this procedure.

The connection to the spike-triggered average may be seen by looking at
the response to a white noise stimulus. On the one hand,

(Lt +7)) = (LK =L)(t+7))
= (Kx*(L)I(t+7)))(T)
= Var(I.)K(T)

if the noise is white. On the other, by ergodicity, averaging over repeated
presentations and different stimuli 1. will yield a response equivalent to aver-
aging over repeated presentations of a single long (duration 7},,,) stimulus.
As Thpaw — 00,

(omtt+n) = 72— [ Lol d

1 Trmax N
= Ic(t)< 5(t—|—7—tk)> dt
= max <]1f Z Ic k— T )
- (% S Lt - ﬂ) (6)
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which is exactly the average stimulus preceding a spike (multiplied by the
firing rate). Therefore the linear response function K(7) is related to the
spike-triggered average STA(7) as follows:

K(r) = —Varyzlc) (%;ﬂ(tk—TO

= WEIC)STA(T) . (7)

Below, we use this expression to derive K (7) from numerically computed
spike triggered averages.

Relating spike-triggered averages and spike-generating
dynamics

In order to relate the common input STA (defined in the previous subsection)
to spike generating dynamics, it will be helpful for us to derive an explicit
formula for the common input STA of a phase model, which captures the
response of a tonically spiking neuron to a small-amplitude current I(¢). Our
formula, and the calculation that yields it, is very similar to a relationship
previously derived (Ermentrout et al., 2007) for the STA of a phase oscillator
without background noise.

We consider a model which tracks only the phase of a neuron as it pro-
gresses along its periodic spiking orbit:

do

- = wHZOI). 0,2 (8)

The function Z(0), called a phase response curve or PRC (Ermentrout and
Kopell, 1984; Winfree, 2001; [Ermentrout and Terman, 2010} Reyes and Fetz,
1993)), determines how a brief current injection applied at a specific phase of
the cycle affects the timing of the next spike. By convention, the neuron is
said to “spike” when 6 crosses 27.

To begin, we assume that the phase model is forced by scaled zero-mean,
stationary stochastic processes, which we also label £.(¢) and ;(t). For now,
&(t) and &(t) have unit variance and are differentiable with some finite
correlation time 7, although we will consider the limit 7 — 0 (i.e. the white
noise limit). We are interested in the average value of £.(t) that precedes



12

a spike; the term &;(t) will play the role of a background noise. Assuming
that the background noise process is scaled by a small constant o, and that
& is scaled by an order of magnitude € smaller still, we write the evolution
equation of the phase model as

do

at L+ Z(0)(0&i(t) + oese(t)), 0el0,7)

where 0,¢ < 1. Note that we have chosen our phase variable to have unit
speed; i.e @ € [0,T), where T is the period of the unperturbed (¢ = 0)
oscillator. We proceed as in [Ermentrout et al. (2007): writing 0 as a series
in the small parameters o and €

Q(t) = eo(t) + 0'910(15) + 6‘901(75) + 0'24920(t) + 0'6911(t) + 62002(t) + ...

and matching terms of same order in the evolution equation, we find 6y(t) = ¢.

We additionally find that 6y, = 0, 6yo = 0, and

9,10 = Z(t)&(t)
O = Z'(t)&(t)0ho(t)
911 = Z(t)fc(t)

so that
t
910<t) = / Z(S)gl(S) ds
0
t s
i) = [ 260 [ 2060 dras
0 0
t
0,(t) = / Z(s)E.(s) ds .
0
In order to compute the spike-triggered average, we need to find the time

of the next spike, assuming the neuron has just spiked (6(0) = 0); in other
words, the time 7 when 0(7) = T. As above, we expand

T = T+0'7'10+0'27'20+0'€T11+... (9)

Using our previous expressions for 0(7), and using the fact that 7 = T +
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oTip + O(0?, 0¢€) to decompose the stochastic integrals, we find

o = - [ 2606
m o= - [ U ()6 ds / " 2(96() | 20y aras

T

o= - [ 2

Next, we use Taylor’s theorem for smooth functions to expand &, about T —¢
to compute

STA(t) = (L(r —1)
= 0e{&(T + om0 + 07199 + ey — 1)
= 0e(€(T —t) + (o710 + 0°T20 + oeT11)EL(T — t)
(

0Ti0 + 07Tog + oemi1 )2 (T — 1))

1
2 C
= 0ell(T —t) + (0710 + 0P 790 + e )EL(T — t)
1
R TELT — 1)) + 0(a o).

_|_

where we have kept terms up to second order both in our expression for 7,
and in our Taylor expansion of .. We can use the independence of &, and &;
to eliminate a large number of terms, as

(Cc®)&i(t+5)) = (&) (&(t+5)) =0.
Similarly,

st +5)) = (&) (&(t+s)) =0, (10)

and so forth for expressions with higher derivatives. The only term that
survives is

STAW) = oelelT 1) x~o [ Z(56.(5)as
oo [ L 20T — D)) ds

- —oer | " 2AUT 1 5)ds
(¢

T
T
2/ Z'(s)A(T — t — s) ds,
0
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where A, is the autocovariance function of £, and we used integration by parts
in the final step. Taking the white noise limit (A (T —t—s) = (T —t—))
and using the periodicity of the PRC (Z(T'—t) = Z(—t)), we recover a very
similar expression as |Ermentrout et al. (2007):

STA(t) = —(0e)*Z'(—t). (11)

Numerical simulations and estimates of spike count
statistics

To compute spike count correlations and other statistical quantities, we per-
formed Monte Carlo simulations of the circuit in Fig. [I. The governing
Connor-Stevens equations , were integrated using the stochastic Euler
method with time step At = 0.01 ms, for a total time T},,, of 8x10° ms. Ran-
dom input currents were chosen at each time step using a standard random
number generator (Marsaglia and Zaman, 1994)). To facilitate exploration
of parameter space i, o, ¢, and g4, we distributed computations on paral-
lel machines through the NSF Teragrid program (http://www.teragrid.org).
The simulation code was implemented in FORTRANO90, and distribution
scripts in Python for running on clusters with and without PBS submission
protocols. All code and scripts will be available at the modelDB site upon
publication (http://senselab.med.yale.edu/modeldb/).

We register spikes in our simulations at times when the membrane voltage
exceeds —30 mV and maintains a positive slope in voltage for the next three
time steps (0.03 ms). To avoid counting each spike more than once, we omit
a 2 ms refractory period after each spike.

Spike count statistics were computed directly from the recorded spike
times, based on a single long simulation, after discarding an initial transient
(200 ms). When sampling spike counts over a time window 7', we advance
the window by %T, resulting in approximately 47}, /T (correlated) samples;
consequently, our estimates of spike counts become noisier as T increases.
To estimate standard errors on spike count statistics, we further divided
the simulation into 10 equal time intervals (8 x 10° ms each) and computed
statistics on each sub-simulation; the standard deviation, divided by /10,
gives us an estimated standard error of the mean. When appropriate, these
are presented along with the mean estimates, as error bars.

Below, we also report spike triggered averages (STAs) described above;
these were computed using long simulations of length 8 x 10" ms for several
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sets of parameter values p, o, and g4. To compute these, the common
input current /. was treated as the “signal” which was averaged and the
private input as a “background” which was not. We used ¢ = 0.10 in this
computation. In our code, the history I. was continuously recorded for a
duration into the past; when a spike was recorded, the STA was augmented
by this current.

Finally, we generate auto- and cross-correlograms (shown in Figure |4))
by collecting inter-spike intervals (ISIs) from our simulations in 1 ms-long
bins. These are used, after the standard normalization, as auto- and cross-
covariance functions.

RESULTS

Rich structure of spike count correlations over short and
long time scales

Our central findings contrast how different conductance-based neuron models
produce correlated spiking when they receive overlapping fluctuating inputs,
via the shared-input circuitry in Fig. [Il Specifically, we show how this cor-
relation depends on the Type I vs. Type Il excitability class of a neuron
described by the well-studied Connor-Stevens model. As discussed above,
neurons are often classified as Type I vs. Type II based on whether their fir-
ing rate-current curves are continuous vs. discontinuous at u = Iy;¢. Figure
demonstrates — as shown in (Rush and Rinzel, 1995) — that the Connor-
Stevens model is Type II when the maximal A-current conductance g4 =~ 0
mS/cm?, Type I for g4 &~ 60 mS/cm?, and displays a gradual transition in
between. Thus, we fix the neurons in the shared-input circuit to a point
along the spectrum from Type I to Type II excitability by choosing different
values of g4.

To compute levels of correlated spiking, we then fix the correlation in
the input currents — that is, the fraction of the current variance that is
shared vs. private to the two cells — to a preset value c. For each value of
c and g4, we compute spike count correlations for wide range of operating
points for the neurons, as determined by a ~ 200 x 50 grid of values for the
mean current g and variance o (both p and o are sampled at a resolution of
0.1 pA/cm?). Specifically, we vary u over values centered at the threshold
current Iy;r(gA), from a minimum g = I;;(gA)—10 (pA/cm?) to a maximum
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Fig. 3: Fano factor of spike counts over a long time window (7" = 256 ms) for a
~ 200 x 50 grid of values for the mean current p and variance o. From
top to bottom, Type II to Type I: (a) gA = 0, (b) gA = 30, and (c)
gA = 60 mS/cm?. Markers indicate relative location of (ju,o)-pair;
subthreshold by 1 pA/cm?(diamond), superthreshold by 2 A /cm?
with low noise (circle) and high noise (square), and superthreshold
with matched Fano factors (asterisk, see text).

p = Iyis(gA) + 10 (pA/cm?) for each value of g4. This enables us to cover,
respectively, both subthreshold (i.e., fluctuation-driven, p < Ip;r(gA)) and
superthreshold (i.e., mean-driven, p > Ip,;s(gA)) firing regimes for each value
of g4. We additionally vary o over 0 < 0 < 5 (uA/cm?), so that we cover
the range from nearly Poisson, irregular spiking to nearly periodic, oscillatory
spiking. This is demonstrated by Figure [3, which shows the Fano factor of
spike counts over a long time window (7" = 256 ms) — a proxy for the squared
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Fig. 4. Spike count correlations for three models at both short and long time

scales. Each row displays data from a value of g4: from top to bot-
tom, Type IT (g4 = 0 mS/cm?), intermediate (g4 = 30 mS/cm?), and
Type I (g4 = 60 mS/cm?). Left column: Spike count correlations
pr, for short windows 7" = 4 ms. Center: Spike count correlations
pr, for long windows T" = 128 ms. Markers indicate points used for
cross-model comparison: subthreshold by 1 gA/cm? (diamonds), su-
perthreshold by 2 uA/cm? and low noise (circles), superthreshold by
2 A /em? and high noise (squares), and superthreshold with matched
Fano factor (stars). Right: Cross-covariance and autocovariance (in-
set) functions for the superthreshold high noise points (squares). Be-
hind cross-covariance functions, the shape of the triangular kernel
that relates this function to spike count covariance (as in Eqn. is
illustrated for 7' = 4 ms (green) and 7" = 128 ms (yellow). For each
value of g4, autocovariance functions are given in normalized units

(so that A(0) =1).
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inter-spike interval coefficient of variation (Gabbiani and Koch, 1998)) — over
the entire u, o parameter space for three representative values of g4 (0, 30,
60 mS/cm?). For each value of g4, the Fano factor spans a range from near
zero (periodic) to one (i.e. Poisson-like) or higher.

For each set of parameters g4, ¢, 4 and o, we compute the Pearson’s
correlation coefficient pr between the spike counts that the neuron pair in
Fig. [1| produces in time windows of length 7. Figure [4] summarizes the
results, for inputs with 10% shared variance (¢ = 0.1). Here, we view pr over
the entire u, o parameter space for three representative values of g4 (0, 30,
60 mS/cm?) and two different time windows (7' = 4 ms and T' = 128 ms).
Values of pr depend in a strong but systematic way on all of the parameters
we have introduced. As we move down a column, we see major qualitative
differences in levels of correlation that emerge at different points through the
Type II (ga = 0) to Type I (g4 = 60) spectrum. Within each panel, the
operating point set by input mean and variance (i, o) have a strong impact
on pr. Finally, the levels and trends in pr depend strongly on the time scale
T. We now describe these trends in more detail; the sections that follow will
give an explanation for how they arise.

We begin with the upper panels in Fig. ] which show correlation pr
for g4 = 0 and hence Type-II excitability. First, note that correlations are
overall quite weak. The largest values of pr obtained are ~ 0.04, indicating
that ~ 40% or less of correlations in input currents are ever transferred into
correlations in output spikes. Moreover, the level of correlations pr and their
dependence on input parameters  and o appear roughly similar for both
short and long time scales T'. In both cases, for a fixed value of DC input
1, a general trend is that pr gradually increases with fluctuation strength o.
For a fixed value of o, in general pr first increases and then decreases with p;
the dependence is slightly more complex at longer T'. Significantly non-zero
values of pr are present for n < I;f, as o becomes appreciably high; this
reflects the bistable firing dynamics of the underlying deterministic system,
which supports both a stable resting state and a stable spiking trajectory for
i < Iy (see Methods, “Characterizing the dynamics of spike generation”).

For Type I excitability at g4 = 60 (lower panels in Fig. , the picture is
dramatically different. First, there is a marked difference between correlation
elicited on short vs. long time scales 7', with much stronger correlations
observed for larger T'. Moreover, correlations produced by Type I neurons
over longer time scales T" are much higher than those observed for Type
IT neurons at any time scale: the largest values of pr obtained for Type
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[ are =~ 0.8, indicating that ~ 80% of correlations in input currents can
be transferred into spike correlations. Conversely, correlations for Type I
neurons are strongly suppressed at short time scales, where < 10% of input
correlations are transferred. Overall, trends in pr as p and o vary are similar
to those found previously: correlations increase with o, and first increase —
then decrease — with p.

Correlation transfer in the intermediate model, g4 = 30, displays trends
between those of the Type I (g4 = 60) and Type II (g4 = 0) cases. As when
ga = 60, spike count correlations pr are very low for short time windows T’
and attain intermediate to high values &~ 60% of input correlations trans-
ferred for longer T'. As for both g4 = 60 and g4 = 0, pr increases with noise
magnitude o and displays a nonmonotonic trend with mean current .

We obtain additional insight into how spike count correlations depend
on Type I vs. Type II spike generation and the time scale T" by choosing
matched values of input parameters 1 and o, and comparing spike count
correlations produced for different values of the A-current conductance g4.
We first concentrate on the p and o values indicated by squares and circles in
Fig. . Both of these points indicate superthreshold inputs 1 = Ip;if(ga) + 2
(nA/cm?) for all g4 values. The square corresponds to higher noise ¢ = 5
pA /em? ) and the circle to lower noise o = 1 uA /em?. In Figure [5] we plot pr
for a full range of T" values from 1 to 200 ms, for nine values of g4 between
ga = 0 and g4 = 60 (thus filling in intermediate values of g4 and T" between
those in Fig. . For both superthreshold cases, we see that Type II neurons
transfer more input correlation into output (spike) count correlation at small
T, while Type I neurons transfer more at large T'; this transition occurs,
roughly, at a value Ty, indicated by the dotted line. We note that for
the low noise case o = 1 (Figure [f(b)), the trends appear less ordered as g4
varies; as we will see in the next section, this is because the cross-covariance
function is more oscillatory here, so that pr has not yet converged to its
asymptotic large T value.

Subthreshold points, denoted by diamonds in Fig. [d], were also compared:
the mean input current is chosen to be p = I;1(ga) — 1 (pA/cm?), and the
noise magnitude to be o = 5 uA /cm?. Here, the differing dynamical structure
between Type II and Type I neurons is evident in the firing statistics (see
Table [1)): while the bistable Type II neuron (g4 = 0) sustains a substantial
firing rate, the monostable Type I neuron (g4 = 60) barely fires at this level of
input current. The correlation coefficient pr, is also very low for g4 = 60 at all
time windows (Figure [5{(c)); this is consistent with the relationship between
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Fig. 5: Correlation coefficient pr vs. time window 7'. Colors indicate g4 = 0
(dark blue) through g4 = 60 (red) mS/cm?. The data from the su-
perthreshold cases (a, b, and d) show the switch from Type II cells
transferring more correlations to Type I cells transferring more as
T increases. The dotted line indicates the approximate time win-
dow Tsywiten where the switch occurs. (a) High noise, superthreshold
(b) Low noise, superthreshold, (c¢) Subthreshold, and (d) high noise,
where input current p has been chosen to match spike train variability
across different values of g4 (see text).

correlation and firing rate identified in earlier studies (de la Rocha et al., 2007}
Shea-Brown et al., 2008). Overall, note that the correlation coefficient pr
increases steadily with T for the Type I neurons (high g4) but stays roughly
constant over a broad range of T" for Type Il neurons (low g4). Thus, while we
do not observe a clear value of T}, for all values of g4 for the subthreshold
point in Figure [fl(c), we see the same relative trends as for superthreshold
points. Below, we will see how this effect follows from filtering properties of
Type I vs. Type II cells.
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Regime Statistics | g4 =0 | ga =30 | g4 = 60
. v (Hz) 113.2 69.9 31.6
superthreshold, high ¢ (LI
P & ©) FFr_o5 | 0.059 | 0.0795 0.195
v (Hz) 108.4 65.0 34.8
FFr_o5 | 0.0107 | 0.013 0.023

superthreshold, low o (O)

v (Hz) 81.7 30.0 0.171
subthreshold (0) FProys | 0145 | 0282 | 099
superthreshold, v (Hz) 113.2 82.5 68.5
fixed variability () FPr_oss | 0.059 | 0.059 | 0.059

Tab. 1: Output firing statistics at each of the comparison points identified in
Figure 4| (see text). For each set of matched points, we note the firing
rate v and the Fano factor of spike counts over long time windows
(specifically, T' = 256 ms).

Because spike generation mechanisms vary widely as g4 changes, the neu-
ron models with matched input statistics at different values of g4 in Figs. (a,
b, ¢) do not all have the same firing variability. In the final panel of Fig. ,
we address this by showing that the same trends in pr persist if we select val-
ues of p to maintain constant firing variability for each value of g4 (see Table
[1} variability measured via large-time (" = 256 ms) Fano factor). Here, we
fix 0 = 5 pA/cm?; the required current value u for each g, is indicated with
a red star in Fig. [

In sum, for matched values of the mean and variance of input currents,
a pair of superthreshold Type II (vs. Type I) neurons will produce greater
spike count correlations pr at short time scales 7. For a wide range of
choices for the mean and variance, there will be a value of T, Where this
relationship reverses, so that Type I (vs. Type II) neurons produce greater
pr for T > Teuien. For matched subthreshold currents, similar trends are
present; overall, the presence of a time Ty, depends on how the input
statistics are chosen.

Finally, we note that the general trends observed here carry over, largely
unchanged, to different values of ¢. Figure [ shows that, for the range 0.1 <
¢ < 0.5, trends in how pr changes with excitability type via (g4) remain
consistent. In particular the relationship between input correlation ¢ and
spike count correlation pr is roughly linear over this broad range of shared
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Fig. 6: Output correlation coefficient py vs. input correlation coefficient c,
showing an approximately linear relationship. Left: short time win-
dow (T = 4 ms). Right: long time window (7" = 150 ms). Colors
indicate gA = 0 (dark blue), gA = 30 (light blue), and gA = 60
(red). Markers indicate relative location of (i, o)-pair; subthreshold
(diamond), superthreshold with low noise (circle), and superthreshold
with high noise (square).

inputs.

Trends in cross-correlation functions for Type | vs. Type Il
neurons

The trends in spike count correlations that we have just described can be
explained from the cross-covariance functions for neuron pairs, and how they
differ as the characteristics of input currents and the level of the A-current
conductance g4 vary. We now demonstrate this via the cross-covariance
functions shown in the right-most column of Fig. [} these are for the su-
perthreshold high noise cases (¢ = 5) discussed in the previous section.

To make the connection, recall that the spike count covariance, Cov(ny, ns),
measured over a window of duration 7" is given by the integral of the cross-
covariance function C2(7) against a triangular kernel of width 7" (see Meth-
ods, and Equation . Thus, for short windows T, only the central peak
of C12(T) contributes to spike count covariance. In the limit of long win-
dows T' — oo, the spike count covariance is simply the integral of the cross-
covariance function, multiplied by 7', over the whole 7 axis. Spike-count cor-
relation pr is then given by the ratio of spike count covariance to the spike
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. . C ..
count variance. As we will show below, pr and M often show similar

trends with 7. Both quantities are of interest: while pr gives a normalized
metric of correlation, Cov(m:nz) g the relevant quantity to analyze impact
on downstream excitable cells (see below, “Readout of correlated spiking by
downstream cells”).

Armed with these relationships between Cis(7), Cov(ng, ns), and pr, we
revisit the trends observed in the previous section and explore their origin.
Starting in the upper-right of Fig. [ note that Ci»(7) has a much larger
central peak — and hence short-T spike count covariance — for Type II
excitability (g4 = 0) than for Type I (bottom-right, g4 = 60). This is also
clear in Fig. (a), where we plot spike count covariance vs. 7. Over long
windows T, the trend reverses. For g4 = 0, the cross-covariance function
shows oscillations with significant negative and positive lobes. These lobes
tend to cancel as C15(7) is integrated over long windows T'. This cancellation
results in little overall change in values of spike-count covariance computed
at increasingly long values of T'. For Type I excitability, however, C15(7) is
mostly positive, so that spike count covariance increases with 7.

As discussed above, spike-count correlation pr is given by the ratio of
spike-count covariance and variance. Comparing Fig. [[a) and Fig. [j|(a) it
is clear that spike-count correlation and spike-count covariance display the
same trends as g, is varied. For example, for very short times T" spike-count
correlation pr is given by the ratio of the peak in Ci2(7) to that in A;(7);
this ratio is also larger for Type II vs. Type I excitability.

For other operating points (i, ), while trends in spike-count correlation
and spike-count covariance do not exactly agree, the some relative trends
persist. Specifically, the general pattern that Type II cells produce greater
covariance over short time windows, and that this trend disappears or re-
verses for larger time windows, holds for each of the superthreshold operating
points explored here. Overall, the major trends in spike count correlations
stem from the presence vs. absence of large negative lobes in cross-covariance
functions for Type II vs. Type I neurons. We next describe how this differ-
ence arises via the distinct filtering properties of the two neuron types.
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Fig. 7: Spike count covariances, and their relationship to spike triggered av-
erages (STAs). Each row compares data collected at a comparison
point for the input current statistics (pu, o); see text. From top, su-
perthreshold current with high noise (square), superthreshold with
low noise (circle), subthreshold (diamond), and superthreshold with
high noise and matched variability (red star). (Left column) Actual
(dotted lines) and predicted (heavy solid lines) spike count covari-
ances (Cov(ny,ny)/T), for representative points and all g4 values.
Colors identify g4 values, which range from gA = 0 (dark blue),
through gA = 30 (light blue), to gA = 60 (red) mS/cm?. (Right
column) Select spike-triggered averages (right column) and one-sided
cross-covariance functions (left column, derived from the STA using
Eqn. |5)) used to compute predicted spike count covariances.
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Spike triggered average currents reliably predict spike
count covariance

The previous section showed how trends in spike count covariances for Type
I vs. Type II neurons follow from the presence of both strongly negative
and positive lobes in cross-covariance functions for Type II neurons. Here,
we explain the origin of this phenomenon. Equations (see Methods)
provide the key link, in which the cross-covariance function is given in terms
of a cell’s spike-triggered average (STA), which is an estimate of the filter
through which cells turn incoming currents into time-dependent spiking rates.
Here, we define the STA in response to common input as an average of the
currents that precede spikes over a single long realization:

1 N
STA = (N > Lt — T)> : (12)

where the t;, are the N spike times from the realization.

We first show that the prediction of spike count covariances from STAs is
accurate. The left column Fig. [7] shows close agreement between spike count
covariances computed from “full” numerical simulation (heavy solid lines)
vs. predictions from STAs via Eqn. (5] (dotted lines). Next, we examine the
shape of the STAs themselves (Fig. [7] right column).

For each operating point we consider, the Type II STA (g4 = 0) has
a pronounced negative lobe. Functionally, this corresponds to a “differen-
tiating” mode through which inputs are processed: negative currents suffi-
ciently far in the past tend to drive more vigorous spiking. Biophysically,
this corresponds to the kinetics of ionic currents, such as inward currents
that can be de-inactivated through hyperpolarization. By contrast, Type
I STAs show a less prominent negative lobe, or none at all. The resulting
filtering of inputs is characterized as “integrating:” a purely positive filter is
applied to past inputs to determine firing rate (cf. (Dayan and Abbott, 2001}
Agiiera y Arcas et al., 2003; Mato and Samengo, 2008))).

The consequences for spike cross-covariance functions are straightforward.
Trends are most pronounced for the superthreshold, high o case (Figure[7[(a)).
Here, the pronounced negative lobe in the Type II STA (g4 = 0) leads to
a similar negative lobe in cross-covariance, and hence a sharp decrease —
following an initial increase — of spike count covariance as a function of time
window T'. The Type I STA (ga = 60) is positive, leading to a spike count
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covariance which steadily increases until it overtakes the Type II value at
T =~ 20 ms. These trends are also reflected in the spike count correlation pr,
as described previously. Moreover, analogous plots for superthreshold, high
o points, where spike-count variability (Fano factor) is maintained across g4
values (Fig. [7(d)), show the same trends.

In the low o case (Fig.[f(b)), the STAs have similar characteristics; how-
ever there is signifiant ringing in the STA at the characteristic frequency of
the oscillator. By the time the predicted (and actual) covariances 7Cov(ny, n2)
reach a limiting value, they are close to zero, and possibly too variable to
order definitively. It appears that covariance is still larger for Type II than
for Type I at ' = 200 ms. In the subthreshold case (Fig. [7(c)), the STA for
the Type I neurons is very small, consistent with the very low firing rate here.
The Type II neuron shows a more robust response, similar in magnitude but
less oscillatory than for the superthreshold regime.

Trends in spike-generating dynamics mirror trends in
spike-triggered averages and transferred correlations

The transition from Type II to Type I spike generation in the Connor-Stevens
model — as manifest in the progression from discontinuous to continuous
spike-frequency vs. current curves in Fig. 2| — can also be characterized via
the type of bifurcation that governs the transition from quiescence to periodic
spiking as increasingly strong currents are injected (see Methods).

For 0 < ga < 46 mS/cm?, the transition occurs via a subcritical Hopf
bifurcation, as voltage trajectories jump from a stable rest state to a pre-
existing stable periodic orbit (limit cycle). This transition is schematized
in the upper-left cartoon in Fig. 2] As this figure shows, for smaller values
of g4 in this range, the frequency of this cycle is high (& 60 Hz). The
voltage-conductance dynamics near both stable structures — the stable rest
state and the limit cycle — is oscillatory. This creates a resonator property
(see (Izhikevich, 2007) and references therein): if they are properly timed,
both negative and positive inputs cooperatively produce spikes or cause them
to occur earlier than they would in the absence of inputs. This is reflected
in the negative and positive lobes in the STA o« K(7) for the g4 = 0 cases
in Figure [7} recall that the STA is the filter applied to incoming currents to
determine firing rates.

By contrast, for large g4 > 58 mS/cm?, a saddle-node on invariant circle
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(SNIC) bifurcation occurs (see Methods). As sketched in the upper-right
cartoon in Fig. [2| in this case there is a pair of fixed points that form a
“barrier” to spike generation for subthreshold values of u, and the shadow,
or “ghost” of these fixed points still affects dynamics for superthreshold u
— producing slow dynamics in their vicinity. The inputs that will elicit or
accelerate spikes are those that will push trajectories past the fixed points,
or their ghost, in a distinguished direction. These inputs therefore tend to
have a single (positive) sign. This is referred to as an integrator property,
and gives rise to the mostly positive STAs seen in Fig. [7] for the g4 = 60
cases. (This argument breaks down for very low-variance (low o) inputs, as
we will see in the next section).

Between these two extremes in g4, the minimum frequency in response
to a ramp current decreases steadily, creating a gradual shift between Type I
and Type I behavior. This gradual shift is mirrored in the neural dynamics,
in which the slow regions in the state space become increasingly dominant.
This transition is clear in the spike triggered averages — and therefore spike
count covariances —shown in Fig. [7] For example, for g4 = 30, we find
both distinctly “Type II”-like and “Type I"-like aspects in the high noise
(Fig. [f(a)) and subthreshold (Fig. [7|(c)) covariance trends respectively. In
the former, spike count covariance increases — then decreases — with T
reflecting an oscillating STA; the end result is that the (normalized) covari-
ance at T' = 200 ms is lower than the covariance at T'= 1 ms. In the latter,

the normalized covariance steadily increases with 7', reflecting a non-negative
STA.

Phase response curves (PRCs) predict common-input STAs

We next show how, for superthreshold operating points, the key properties of
Type I vs. Type II spike generation that determine the filtering of common
inputs can be understood via a commonly used and analytically tractable
reduced model for tonically spiking neurons. The response of such neurons
to an additional small-amplitude current /() can be described by a phase
model, a one-dimensional description which keeps track only of the progress
of neuron along its periodic spiking orbit (or limit cycle). Identifying progress
along the cycle with a phase 6 € [0, 27), this model is completely determined
by a single function of phase Z(0), called a phase response curve or PRC (Er-
mentrout and Kopell, 1984; [Wintfree, 2001; [Ermentrout and Terman, 2010
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Fig. 8: Comparison of PRCs to spike triggered averages (STAs) computed
for both low and high noise, for both Type I (left column) and Type
IT (right column) neurons. For simplicity of visualization, each curve
has been normalized by its maximum; that is Z(t) = Z(t)/ max(Z(t)),
STA(t) = STA(t)/ max(STA(t)), and —Z'(t) = —Z'(t)/ max(—Z'(t)).
In addition, the time axis has been scaled by the mean period in each
case. Top row: PRC, showing monophasic and biphasic shape for
Type I and Type II neurons respectively. Middle row: High noise
STA; the Type I neuron has lost the negative lobe in its STA, while
the Type II neuron retains a negative component. Bottom row: Com-
parison of (blue dashed) dPRCs with STA for the low noise (cyan)
case. Both STAs have negative components.
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Fig. 9: Correlation coefficient p at time window 7" = 200 ms, as g4 is varied.
The data (gray solid) are from high-noise, superthreshold points and
are the same as reported in Figure . The prediction (black solid with
diamonds) uses Equation . These data show the increase in long
time scale correlation as the model transitions from Type II to Type
L.

Reyes and Fetz, 1993):

do

= = Wt ZO1(). (13)

We can interpret the meaning of this function by considering its effects on the
timing of the next spike delivered at a particular phase of the limit cycle ¢. If
Z(¢) > 0, then a positive input delivered at that particular phase will push
the neuron further along, advancing the time of the next spike; if Z(¢) < 0,
the same input would delay the time of the next spike.

Neurons that display Type I spiking have a purely positive (or Type I)
PRC, while Type II neurons show a PRC that has both positive and negative
lobes (Ermentrout and Kopell, 1984; Ermentrout, 1996; [Hansel et al., 1995;
Brown et al., 2004). A purely positive PRC is characteristic of dynamics
near a saddle node bifurcation, in which the system lingers near the ghost
of its fixed points (as described in the previous section); input in a specific
direction is needed to force the system away and elicit a spike. A biphasic
PRC reflects oscillatory structure in the phase space, in which correctly timed
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negative and positive inputs can cooperate to elicit a spike (as with a Hopf
bifurcation).

Strong relationships between the PRC and the STA have been found
for neurons close to the threshold for periodic spiking (i.e., i 2 Iy, see
Methods). Spike-triggered covariance analysis of both a Type I phase model
and the Wang-Busaki model show that the dominant linear “feature” (corre-
sponding to the STA) qualitatively resembles the PRC (Mato and Samengo,
2008)) in the presence of sufficient current noise. In the (Type II) Hodgkin-
Huxley model, the two dominant “spike-associated” features identified through
covariance analysis closely resemble the STA and its derivative; the STA, in
turn, closely resembles the PRC (Agiiera y Arcas et al., 2003)).

In contrast, phase models in the oscillatory regime (far from the excitabil-
ity threshold) are known to have an STA proportional to the derivative of
the PRC (Ermentrout et al., 2007). We generalize this to the case of Fig. [1]
where the relevant signal & is delivered on top of a noisy background (see
Eqn. (1)), Methods): STA(t) & —Z'(—t).

In Figure[§] we test the accuracy of these relationships for the superthresh-
old points considered above. We show results for Type I (g4 = 60, left panels)
and Type II neurons (g4 = 0, left panels), and compare the STA computed
at two different noise levels to the shape of the PRC (Z(#)) and its derivative,
labeled dPRC (Z’(6)). The time argument of the STA has been scaled so
that one period (7") maps onto the unit interval; likewise, the PRC is mapped
onto the unit interval. At the lower level of noise, we have good correspon-
dence between the STA and the dPRC in both cases. Notably, both Type I
and Type II neurons have biphasic STAs. At high noise levels, while there is
not a strong quantitative relationship between the STA and the PRC itself
(unlike in the excitable regime explored by (Agtiera y Arcas et al., 2003)),
the PRC carries important clues about the qualitative behavior of the STA.
The Type II neuron retains the biphasic shape reflective of its PRC, while
the Type I neuron has shifted to a purely positive STA. In sum, by predicting
the STA shape, the PRC gives important clues to the linear response (and
hence common input transfer) that we observe in Figure .

Finally, we test an alternate result (cf. (Barreiro et al., 2010; |Abouzeid
and Ermentrout, 2011)) that, in limited cases, relates PRCs to spike count
correlations directly. For for long 7" and reasonably small ¢ and ¢,

- [i f027r Z(x) dz]2
p L 77 (2@) de

+0(0?). (14)
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In Figure [9) we show that this gives a close approximation to simulation
results for 7" = 200 ms in the superthreshold, high-noise case (see Table 1).
Moreover, we can gain insight into the limitations this asymptotic approxi-
mation by comparing with the superthreshold, low-noise case. The results
of Barreiro et al. (2010); |/Abouzeid and Ermentrout (2011)| are derived by
taking the asymptotic limit 7' — oo before considering o finite but small;
in practice, the smaller the noise variance o, the longer 7" must be in order
to see this effect. For our low-noise points, the asymptotic behavior has not
been recovered even at 7' = 1000 ms (as may be seen in Figure [f(b)). By
using a very large (but probably biologically irrelevant) time window (data
not shown), we eventually recover results consistent with the asymptotic

prediction (Equation [14)).

Readout of correlated spiking by downstream cells

How could the difference in spike count correlation between Type I and Type
IT cells impact neural circuits? We explore this impact in a simple network,
in which correlated Type I or Type II cells collectively converge to drive a
neuron downstream (see Fig. [L0|(a)).

In more detail, the drive comes from a population of N = 200 identical
Type I (ga = 60 mS/cm?) or Type IT (g4 = 0 mS/cm?) upstream neurons; we
refer to these as population I and population II respectively. The upstream
populations receive correlated inputs with ¢ = 0.5 and values of p and o
that yield matched levels of variability, as for the parameter set identified
with stars in Fig. [4] (for population I, y = 18 pA/cm? and o = 5 pA/cm?;
population II, 4 = —6 pA/cm? and o = 5 uA/cm?). This yields firing rates
of v; = 63.5 Hz for neurons in population I, and v;; = 113 Hz in popula-
tion II. Each upstream neuron has a single, instantaneous (delta function)
synapse onto the downstream neuron of strength g; or g;r; the relative size
of the EPSPs are chosen so that the mean driving current is equal for each
population (vrgr = vyrgrr, so that gy = 0.825 mV, g;; = 0.5 mV).

The total input received by the downstream neuron, g, is thus the
weighted sum of IV upstream spike trains y,(¢):

L4s(t) = gzZyj(t) or Ig(t) = guZyj(t). (15)

When the population size NV is large, the summed signal has the same tempo-
ral characteristics as the the cross-covariance between neuron pairs. Specifi-
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Fig. 10: (a) Schematic of “upstream” Type I or Type Il neuron population re-
ceiving common and independent inputs, and converging to a Leaky
Integrate and Fire (LIF) cell downstream. (b) PSTHs from Type I
and Type II upstream populations. (c¢) Predicted power of the volt-
age fluctuations in the LIF cell, using STA (see text). (d) Actual
firing rates of the LIF cell, showing similar trends with LIF time
scale Tr1p.
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cally, the autocovariance of the summed input is

AdS(T) = E [(Ids(t) - <Ids>) (Ids(t + 7-) - <]ds>)]

(16)

= NN =DE[%(t) —vi)(y;(t +7) = )] + NE[(yit) — vi) (wi(t + 7) — v3)]

~ N?’E [(yi(t) — Vi)(yj(t +7) — ’/j)]
NQClz(T) .

This relationship is evident in the peri-stimulus time histograms (PSTHs) in
Fig. [L0[b). For population II, fast fluctuations above and below the mean
population output reflect the negative lobe in Ci2(7) adjacent to its large
peak. Meanwhile, fluctuations in the output of population I are less extreme
and more gradual in time.

The downstream cell integrates I4(t) via Leaky Integrate-and-Fire (LIF)
voltage dynamics (Dayan and Abbott, 2001)):

dV
TLIF - = —(V = V) + 14s(t)
t
where 7.;F is the membrane time constant and V, = —60 mV is the rest
voltage. Spikes are produced when the voltage V' crosses Vippesn = —45 mV,

at which point V is reset to V.

For the parameters we have chosen, the downstream neuron is driven sub-
threshold, so that (/4(t)) is not sufficient to excite a spike — any spikes must
be driven by fluctuations in I45(t). Thus, the variance of fluctuations in V()
should give a rough estimate of how often membrane voltage will exceed the
threshold, and consequently the downstream firing rate. This variance is easy
to compute for a passive membrane (i.e., neglecting spike-reset dynamics).
First, note that

V(t) = Vr+/t Lis(s)L(t — s) ds

—00

where L is a one-sided exponential filter

1

L(t) = —eXp(—t/TL[F), tZO
T
0, t<0.

We compute the variance as follows, using the causality of L to take each

(17)
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upper limit of integration to infinity:

t

E[V(1)] — E{ / (Lua(5) — (L)) L(t — 5) ds / (Lia(r) — (L) L(t — 1) dr

—00 —00

- /_Oo /_OO dsdr L(t —s)L(t —r)E[I(s)I(r)]
— /_Oo /_OO dsdr L(t — s)L(t —r)Ags(s — 1)
-/ s Ap()(L# D) (—2) (1)

where L(t) = L(—t); the last step involved the substitution z = s — r and
switching the order of integration. This final interior integral can be evalu-

ated in the Fourier domain: using the properties that F[L|(w) = F[L](—w)
and the fact that for real functions F[f](—w) = F[f](w), we find

FloD)| @ = IFILw)P
1

2.2 -
14+ w*Tip

Therefore (for example by consulting a transform table)

(LeD)#) = 5o exp(—tl/muae).
TLIF
Substituting into Equation ((18)), we see that the variance of the downstream
cell’s voltage is given by a formula similar to that for the spike count covari-
ances (Equation : both involve integrating the cross-covariance function
against a (roughly) triangular-shaped kernel, with time scale 7.;p in the
former case and T in the latter.

Figure [10[c) shows the by-now familiar trends that this predicts. For
short membrane time scales 777, Type II populations drive greater voltage
variance; this is precisely analogous to the finding that spike-count correla-
tions are greater for Type II cells over short time scales T. For long 7 ;F,
Type I populations drive greater voltage variance, just as Type I spike trains
are more correlated over long time scales 7. In panel (d), we compare this
trend with actual firing rates elicited in the downstream cell (from numerical
simulation). The general trends match, validating our simple prediction.
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In sum, downstream neurons with short membrane time scales (7 < 5
ms) are preferentially driven by Type II cells upstream; for longer time scales,
the preference shifts to Type I cells. Some implications of this finding are
noted in the Discussion.

DISCUSSION

Diverging connections, leading to overlapped input shared across multiple
neurons, are a ubiquitous feature of neural anatomy. We study the interplay
between this connectivity pattern and basic properties of spike generation in
creating collective spiking across multiple neurons. We range spike generation
over the fundamental categories of Type I to Type II excitability (Rinzel and
Ermentrout, 1998; Hodgkin, 1948). The transition in excitability is produced
by varying the A-current conductance g4 within the well-studied Connor-
Stevens neuron model.

Our principal finding is that excitability type plays a major role in how
shared — i.e., correlated — input currents are transformed into correlated
output spikes. Moreover, these differences depend strongly on the time scale
T over which correlations are assessed. At short time scales T, Type-II
neurons tend to produce relatively stronger spike correlations for comparable
input currents (Marella and Ermentrout, 2008; |Galan et al., 2007). At longer
time scales, the opposite is generally true: for a broad range of input currents,
Type-I neurons transfer most of the shared variance in their inputs (~ 80%)
into shared variance in output spikes, while Type-II neurons transfer less
than half (~ 40%).

We show that these results have direct implications for how downstream
neurons with different membrane time constants will respond to Type I vs.
Type II populations. Specifically, downstream neurons preferentially respond
to populations that are strongly correlated on time scales similar to their
membrane time constant. Interestingly, for the case we study, we find that
the breakpoint between selectivity to Type I vs. Type II populations was for
downstream membrane time constants of &~ 5 ms, easily within the ranges
found experimentally.

This raises interesting possibilities for neuromodulation. The membrane
time constant of the downstream cell could be changed by shunting affects
of additional background inputs — leading to a switch in its sensitivity to
different upstream populations. Alternatively, modulators applied to the
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upstream populations themselves could change their excitability from Type
I to Type II (Stiefel et al., 2008; |Stiefel et al., 2009), adjusting their impact
on a downstream cell with a fixed membrane time constant.

Overall, we demonstrate and apply a general principle: the presence and
balance among different membrane currents controls not only single-cell dy-
namics but also the strength and time scales of spike correlations in cell
groups receiving common inputs. We show how this relationship can be un-
derstood. As a membrane current (here, g4) is adjusted, firing rate - current
curves progressively transition (here, from Type I to Type II). At the same
time, there is a transition in periodic orbit types that neural trajectories
visit (here, ranging from orbits “near” a fixed point to relatively “isolated”
orbits (Rush and Rinzel, 1995)). In turn, this produces a steady progression
of spike-triggered averages — and hence the filters that neurons apply to
shared input signals (here, from primarily integrating to primarily differen-
tiating modes (Mato and Samengo, 2008), cf. (Agiiera y Arcas et al., 2003))).
Basic formulas can then be used to translate these filtering properties into
predictions for correlated spiking in neural pairs and populations
as well as the downstream impact of this cooperative activity.
We anticipate that this approach will bear fruit in studies of the collective
activity of a wide variety of neuron types.

Relationship with prior work

A number of prior studies have considered the problem of how spike generat-
ing dynamics affect the transfer of incoming current correlations into outgoing
spike correlations (Binder and Powers, 2001; |de la Rocha et al., 2007; Shea-|
Brown et al., 2008; Rosenbaum and Josi¢, 2011; [T'chumatchenko et al., 2010;
Marella and Ermentrout, 2008; [Vilela and Lindner, 2009; Barreiro et al.
2010; |Ostojic et al., 2009; [T'chumatchenko et al., 2010; Hong and De Schut-|
ter, 2008). In particular, (de la Rocha et al., 2007; [Shea-Brown et al., 2008}
Rosenbaum and Josi¢, 2011) show that leaky integrate-and-fire (LIF) neurons
can transfer up to 100% of current correlations into spike count correlations.
The level transferred increases with the firing rate at which single neurons
are operating, and the time scale T'. These findings are simpler to state
compared with the present results for conductance-based neuron models, for
which 100% correlation transfer is never obtained, and trends with 7" differ
depending on g4.

Other works (Hong and De Schutter, 2008; [Shea-Brown et al., 2008;
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Vilela and Lindner, 2009) investigate correlation transfer in more complex
spiking models. In particular, Shea-Brown et al. (2008)|and |Vilela and Lind-
ner (2009)|explore the full parameter space of input currents for the quadratic
integrate and fire model — arguably that with the next level of complexity
beyond the LIF model. These authors find similar trends in correlation
transfer as the neurons’ operating points change, but a limitation to 66%
rather than 100% in correlation transfer. Meanwhile, [Hong and De Schut-
ter (2008)| show complex dependencies on neural operating point for the
Hodgkin-Huxley model. Taken together, these studies suggested that corre-
lation transfer depends on spike generating dynamics in a rich and diverse
ways.

This opened the door to a broader study, but exploring correlation trans-
fer for the full space of possible spike generating dynamics in neural models is
a daunting task. The axis that spans from Type I to Type II excitability pro-
vides a natural focus. This has been explored using sinusoidal “normal form,”
phase-reduced models (Marella and Ermentrout, 2008; (Galan et al., 2007}
Barreiro et al., 2010; |Abouzeid and Ermentrout, 2011)). These studies used
simulations in the superthreshold regime, together with analysis in the limits
of very short or very long time scales T', to show the same trend in correla-
tion transfer over short vs. long 7" that we find here for conductance-based
models. A greater frequency of instantaneous (small T") spikes for Type II
vs. Type I neurons was predicted using these simplified models (Marella and
Ermentrout, 2008; Galan et al., 2007)); later, Barreiro et al. (2010) predicted
the switch in relative correlation transfer efficiency from Type II to Type I
models as 7' increases.

The present contribution is to test the resulting predictions using bio-
physical, conductance-based models valid in a wider range of firing regimes,
to explain the origins of variable correlation transfer via filtering properties
of Type I vs. Type II cells, and to demonstrate the impact on downstream
neurons.

Scope, limitations, and open questions

The circuit model that we have studied, as illustrated in Fig. [1} is limited
to a single, idealized feature of feedforward connectivity: overlapping in-
puts to multiple recipient cells. More realistic architecture could include
delays in incoming inhibitory vs. excitatory inputs (Gabernet et al., 2005).
Interactions of shared-input circuitry with recurrent connectivity also pose



38

important questions (Ly and Ermentrout, 2009). This is especially so given
the distinct properties of Type I vs. Type II cells in synchronization due to
reciprocal coupling (Rinzel and Ermentrout, 1998; |Ermentrout and Terman,
2010).

Other aspects of our biophysical and circuit dynamics are also idealized.
For one, individual input currents fluctuated on arbitrarily fast time scales
(i.e., as white noise processes). Relaxing this would be an interesting ex-
tension. While prior studies (de la Rocha et al., 2007)) suggest that trends
will persist for inputs with fast (but finite) time scales, new effects could
arise for slower-time scale inputs representative of slower synapses or even
network-level oscillations. Another addition would be for inputs to arrive via
excitatory and inhibitory conductances, rather than currents; while previous
studies with integrate and fire cells (de la Rocha et al., 2007) have found
that this yields qualitatively similar results, there could be interesting inter-
actions with underling filtering properties in biophysical models. The same
holds true for inputs that arrive at dendrites in multi-compartment models.

Likewise, the circuitry of Fig. [10j(a) that we used to investigate the im-
pact of correlated spiking on downstream neurons was highly idealized. An
especially appealing extension would be to note that inhibitory and excita-
tory neurons often have different excitability types. Thus, downstream cells
could receive input from both excitatory Type I and inhibitory Type II pop-
ulations. Our results suggest that sensitivity to excitatory vs. inhibitory
afferents would vary with membrane time constants downstream, possibly
amplifying the modulatory effects identified here.
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