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Santhanam G, Yu BM, Gilja V, Ryu SI, Afshar A, Sahani M,
Shenoy KV. Factor-analysis methods for higher-performance neural
prostheses. J Neurophysiol 102: 1315–1330, 2009. First published
March 18, 2009; doi:10.1152/jn.00097.2009. Neural prostheses aim to
provide treatment options for individuals with nervous-system disease
or injury. It is necessary, however, to increase the performance of such
systems before they can be clinically viable for patients with motor
dysfunction. One performance limitation is the presence of correlated
trial-to-trial variability that can cause neural responses to wax and
wane in concert as the subject is, for example, more attentive or more
fatigued. If a system does not properly account for this variability, it
may mistakenly interpret such variability as an entirely different
intention by the subject. We report here the design and characteriza-
tion of factor-analysis (FA)–based decoding algorithms that can
contend with this confound. We characterize the decoders (classifiers)
on experimental data where monkeys performed both a real reach task
and a prosthetic cursor task while we recorded from 96 electrodes
implanted in dorsal premotor cortex. The decoder attempts to infer the
underlying factors that comodulate the neurons’ responses and can use
this information to substantially lower error rates (one of eight reach
endpoint predictions) by �75% (e.g., �20% total prediction error
using traditional independent Poisson models reduced to �5%). We
also examine additional key aspects of these new algorithms: the
effect of neural integration window length on performance, an exten-
sion of the algorithms to use Poisson statistics, and the effect of
training set size on the decoding accuracy of test data. We found that
FA-based methods are most effective for integration windows �150
ms, although still advantageous at shorter timescales, that Gaussian-
based algorithms performed better than the analogous Poisson-based
algorithms and that the FA algorithm is robust even with a limited
amount of training data. We propose that FA-based methods are
effective in modeling correlated trial-to-trial neural variability and
can be used to substantially increase overall prosthetic system
performance.

I N T R O D U C T I O N

Neural prostheses, which are also termed brain–machine and
brain–computer interfaces (BCIs), offer the potential to sub-
stantially increase the quality of life for people suffering from
motor disorders, including paralysis and amputation. Such
devices translate electrical neural activity from the brain into
control signals for guiding paralyzed upper limbs, prosthetic
arms, and computer cursors. A few research groups have now
demonstrated that monkeys (e.g., Carmena et al. 2003; Mus-
allam et al. 2004; Santhanam et al. 2006a; Serruya et al. 2002;
Taylor et al. 2002; Velliste et al. 2008) and humans (e.g.,
Hochberg et al. 2006; Kennedy et al. 2000; Leuthardt et al.

2004; Schalk et al. 2008; Wolpaw and McFarland 2004) can
learn to move computer cursors and robotic arms to various
target locations simply by activating neural populations that
participate in natural arm movements. Although encouraging,
even these compelling proof-of-concept, laboratory-based sys-
tems fall short of exhibiting the level of performance needed
for many everyday behaviors and for achieving clinical viabil-
ity.

We previously demonstrated the design and implementation
of a neural prosthetic system based on neural activity from an
electrode array implanted in dorsal premotor cortex (PMd)
(Santhanam et al. 2006a). Activity in this region is known to
correlate with an upcoming reach endpoint, including both
direction and extent (Messier and Kalaska 2000). Using this
information, we demonstrated the ability to predict the sub-
ject’s intended reach (e.g., one of eight potential targets) at a
performance much higher than previously reported. The im-
provements were achieved by systematically designing the
neural analysis epochs and implementing standard maxi-
mum likelihood estimators (Zhang et al. 1998) based on
simple Gaussian and Poisson statistical models of neural
firing rate. These models offer ease of computation, have
been used in similar studies, and are fairly standard in the
field (e.g., Brockwell et al. 2004; Hatsopoulos et al. 2004;
Maynard et al. 1999; Shenoy et al. 2003). We now revisit
the choice of these models to further increase prosthetic
performance and, perhaps, to gain insight into the modeling
of neural activity.

Reach endpoint is the “signal” that we seek to extract from
the neural recordings. Other systems attempt to predict contin-
uous arm kinematics (see Velliste et al. 2008, among others)
and, although the techniques presented here can apply to those
systems, we currently restrict ourselves to discrete reach-
endpoint classifiers. Reach endpoint is a primary influence on
PMd activity during the planning of upcoming movements,
although there is also a variety of other factors that modulate
neural observations from experimental trial to trial. For exam-
ple, there is evidence that PMd activity can depend on other
behavioral aspects of movement control, including the type of
grasp (Godschalk et al. 1985), the required accuracy (Gomez et
al. 2000), reach curvature (Hocherman and Wise 1991), reach
speed (Churchland et al. 2006a), and (to some degree) force
(Riehle et al. 1994). Additionally, there can be other types of
unobserved influences (e.g., attentional states and biophysical
“spiking noise”) (Chestek et al. 2007; Musallam et al. 2004)
that further modulate cortical activity, even when observable
behavior is held fixed. These various influences may inadver-
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tently mask the signal of interest (reach endpoint) and thereby
reduce prediction (decoding) accuracy.

Figure 1A provides an example of the trial-to-trial variability
present in the activity of two recorded neurons. On each trial,
a subject is randomly presented one of eight reach targets and
is instructed to make a reach to that target after some delay.1

Trials were first grouped by upcoming reach endpoint and, for
each neuron, the emitted action potentials (spikes) were
counted in a fixed time interval after the endpoint was cued to
the subject. This overall neural response is the well-known
“tuning curve” (e.g., Georgopoulos et al. 1982). Note the large
variability in spike counts within each endpoint’s set of trials,
which results in overlap between the ranges of spike counts for
reach endpoint. The challenge for any prediction algorithm is
to avoid mistaking these variations as being the signature for an
entirely different reach endpoint.

Consider now the neural response when reaching to a single
reach endpoint. It is useful to frame this variability as falling
into two classes: “independent” and “shared” variability, across the
neural population. Independent variability can come from many
sources. Electrophysiologists are perhaps most familiar with
channel noise in the spiking process (i.e., spiking noise). Other
sources include variability in active dendritic integration, syn-
aptic failure, general quantal (in the vesicle sense) release
variation, and axonal failure in incoming spikes (Faisal et al.
2008). Figure 1B shows simulated data for two neurons that

exhibit independent variability and no shared variability for a
particular reach endpoint. The spike counts for each neuron are
different on each trial, but there is no inherent correlation
between the observations with regard to the magnitude or
polarity of these perturbations. Critically, when modeling neu-
ral data for prosthetic systems, we conventionally make the
simplifying assumption that all trial-to-trial variability unre-
lated to the decoding task falls into the class of independent
variability. For classic Gaussian models, this assumption is
made to avoid a problem of too little training data for fitting a
full covariance matrix (Maynard et al. 1999). For Poisson
models, there is no standard multivariate generalization.

In contrast, Fig. 1C shows simulated data from two neurons
that exhibit shared variability and independent variability. The
inset shows a hypothetical factor, such as intended reach speed,
undergoing modulation across trials for the same reach end-
point (blue points correspond to fast reaches and red dots to
slow reaches). In this construction, when the speed is greater
than average, neuron 1 emits slightly more spikes than average
and neuron 2 emits slightly fewer spikes than average. When
the factor is below average, the reverse is true. This neuron-
by-neuron difference in polarity and magnitude is common-
place among response properties (e.g., Churchland et al.
2006a). Linking the hypothetical factor in this example to a
behavioral feature like reach speed helps build intuition on how
correlations can arise in the neural observations. However, it is
important to realize that shared variability can also arise from
internal cognitive states, such as attention or motivation, or

1 Exact specifics of our experimental setup are provided in METHODS and are
not essential for this overview.
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FIG. 1. A: schematic of experimental task where subject reaches to one of 8 reach endpoints. Data from 2 real neurons are shown where action potentials were
counted over a 200-ms window after target presentation for each experimental trial. Trials were segregated by reach endpoint and a box plot was generated
denoting the median spike count (white circles with black dots), the 25th to 75th percentiles of the spike counts (blue rectangles), and the ranges of the outliers
(thin “whiskers”) for each endpoint. B: simulation of 2 neurons whose trial-to-trial spike counts were perturbed independent of one another. C: simulation of 2
neurons whose spike counts were primarily perturbed by a shared hidden factor (see inset). The diagonal orientation relative to the main axes is a telltale sign
of a correlated relationship between these 2 neurons.
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even by-products of the neural circuitry, such as shared inputs
(Kulkarni and Paninski 2007). Regardless of the source, de-
coding algorithms can potentially benefit from modeling this
shared variability. The algorithm could systematically ignore
shared variability, ideally resulting in better decoding perfor-
mance.

In reality, we do not have direct access to the inset in Fig.
1C: many different uncontrollable factors can be involved and
many of them are simply unobservable (e.g., cognitive atten-
tiveness to the task). We cannot explicitly model the factors
that influence the neural observations. We instead attempt to
infer a set of shared underlying factors for each trial, along
with the mapping between these factors and the observed data.
By “mapping,” we mean the precise polarity and magnitude by
which a factor perturbs the response of a particular neuron.
Such a mapping defines the regular relationships between the
observed neurons and some common factors, providing a
model of how the spike counts of a population of neurons are
expected to covary.

We are motivated to pursue such a solution given the
observation that the mean neural response associated with
planning to a given reach location modulates during a high-
speed sequence of target presentations (Kalmar et al. 2005).
Initial studies showed that performing a “trial-by-mean” nor-
malization approach (that simply divides the response rate of
each neuron by the mean response rate across all measured
neurons on that trial) appreciably improved performance (Gilja
et al. 2005). Additionally, any attempts to better model neural
activity can potentially lead to insights into the neural code,
although we do not directly explore this topic here.

We first briefly survey maximum-likelihood techniques for
developing reach-endpoint classifiers and we then substitute
conventional neural models with a Factor Analysis (FA)–
based model. Discovery of the underlying factors and their
corresponding mappings to the observed data is the fundamen-
tal objective of FA (Everitt 1984). The FA-based model pro-
vides the foundation for a better endpoint classifier for our
reach-task data set. Next, we extend the relevant models to
handle multitarget data to build an even higher-performance
classifier. The performance achieved by these new methods is
compared with the classic Gaussian and Poisson maximum-
likelihood approaches used in our previous work (Santhanam
et al. 2006a).

We also explore three central issues associated with such
models. First, we look at the influence of the neural data
window size (i.e., the time over which neural data are consid-
ered for the classification training and prediction) on the
efficacy of our new FA methods. As the data window size is
reduced, our ability to identify shared underlying factors may
be reduced. As such, it is important to quantify whether the FA
methods provide as much improvement for short data windows
(25–75 ms) as they do for moderate window lengths (150–250
ms). Second, a natural question is whether it is possible to gain
even more performance by extending the FA model to use
Poisson statistics (instead of the Gaussian statistics in standard
FA), especially given that our neural recordings are comprised
of low-mean count data. We examine this question by techni-
cally modifying our FA models to support Poisson statistics in
a manner similar to the work of Yu et al. (2006), which in turn
drew inspiration from Smith and Brown (2003) and Brown et
al. (1998). Finally, because it may not be possible to retrieve

large amounts of training data from disabled clinical patients,
it is fruitful to understand how well these new algorithms
perform as the training size is varied across real-world ranges.
We investigate this question to better qualify the robustness of
the multitarget FA algorithm.

M E T H O D S

Delayed-reach task and neural recordings

We trained two rhesus monkeys (G and H) to perform a standard
instructed-delay center-out reaching task (e.g., Cisek and Kalaska
2004), while recording neural activity in the arm representation area
of monkey PMd. Animal protocols were approved by the Stanford
University Institutional Animal Care and Use Committee. Hand and
eye positions were tracked optically (Polaris, Northern Digital, Wa-
terloo, Ontario, Canada; Iscan, Burlington, MA). Stimuli were back-
projected onto a frontoparallel screen 30 cm from the monkey. As
shown in Fig. 2A, real-reach trials began when the monkey touched a
central yellow square and fixated his eyes on a magenta cross.
Following a touch hold time (200–400 ms), a visual reach target
appeared on the screen. After a randomized (200–1,000 ms) delay
period, a “go” cue (central touch and fixation cues were extinguished
and the reach target was slightly enlarged) indicated that a reach
should be made to the target. As previously mentioned, neural activity
during the delay period (time from target appearance until the “go”
cue) reflects, among other variables, the endpoint of the upcoming
reach (Churchland et al. 2006a; Messier and Kalaska 2000). This task
is also known as a “delayed-reach” task.

Eye fixation was enforced throughout the delay period to control for
eye-position-modulated activity in PMd (Batista et al. 2007; Cisek and
Kalaska 2002). This fixation requirement is appropriate in a clinical
setting if targets are near-foveal or imagined as in a virtual keyboard
setup. The hand was also not allowed to move until the go cue was
presented, providing a proxy for the cortical function of a paralyzed
subject. Subsequent to a brief reaction time, the reach was executed,
the target was held (�200 ms), and a juice reward was delivered along
with an auditory tone. An intertrial interval (�250 ms) was inserted
before starting the next trial. We presented various target configura-
tions (2, 4, 8, or 16 targets), but for simplicity we restrict ourselves
here to the 8-target configurations. We collected between 75 and 150
usable trials per reach endpoint (behavior condition) in a given data
set. We also collected a small number of data sets with �200 usable
trials per condition.

Our monkeys were well trained before we collected the data from
this conventional delayed-reach task. Therefore their behavior was
highly stereotyped and the trial-to-trial variability present in the neural
responses may not be representative of real-life applications. Fortu-
nately we had access to data sets that were not as stereotyped by virtue
of having the following characteristic: interspersed within the de-
layed-reach trials, we introduced several high-speed reach-target pre-
sentations (dubbed prosthetic cursor trials). For these trials, an initial
target was presented and displayed for a predetermined time, within
about 200–500 ms depending on the particular data set. The usual go
cue was then omitted after this time period and another target was
almost immediately presented thereafter (�15 ms). Several rapid
trials were sequenced until the go cue was eventually shown, instruct-
ing the animal to follow through with a real reach. Since the monkey
did not know whether a particular trial will end in a reach, he naturally
planned a reach to each of the presented targets.

This experimental setup was originally designed for the purposes of
our previous study (Santhanam et al. 2006a). We later observed that
the neural responses modulate depending on how many high-speed
target presentations are presented in a row (Kalmar et al. 2005) and
this variability degraded our ability to decode the subject’s intended
reach endpoint. These data sets are ideal candidates for applying our
FA-based decoding algorithms since they show a reduction in decod-
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ing performance due to unaccounted factors. We also shuffle the trials
within the day to ensure that the training data set is chosen from the
entire data set, as opposed to only some initial set of trials, because
we presume the subject’s attention and motivation tend to steadily
decline throughout the experimental session (Chestek et al. 2007).
The shuffling is especially appropriate since the attentional and
motivational states of a human subject during clinical usage will
surely be more unpredictable than our own highly controlled
laboratory setup.

A 96-channel silicon electrode array (Cyberkinetics, Foxborough,
MA) was implanted in PMd in the right hemisphere for monkey G and
left hemisphere for monkey H, contralateral to the reaching arm.
Photographs depicting the anatomical placement of the array and
details of the methods by which we discriminated and screened spike
waveforms have been published previously (Santhanam et al. 2006a;
cf. Supplemental METHODS). As in the past, we applied the ANOVA
tuning test, meaning that a single- or multineuron unit was included in
our analyses only if its activity was significantly modulated by reach
endpoint during the delay period. This was done for data sets from
both monkey G and monkey H for consistency. Similar unit screening
procedures have been performed by others (e.g., Musallam et al.
2004) and we use our scheme across all algorithms tested.2 We also
removed all units that showed no modulation for any one reach
endpoint in the set of training trials. This was to prevent certain
degeneracies in the fitting of the FA models. There were only a few
units (5–15 units and �10% of tuned units) removed for this reason.

For all of the data analyses, the window for counting neural spikes,
known commonly as the “integration window” (Tint), started 150 ms
after target presentation (i.e., Tskip � 150 ms). We varied Tint within
a range of 25 to 250 ms depending on the particular analysis being
performed. For each trial, all spiking activity from a particular neural
unit that fell within this interval was aggregated to produce a single
spike count per neuron per trial. Table 1 provides a perspective as to
the number of units that were available after the unit screening
procedures. There are naturally far fewer units available when con-
sidering very brief Tint periods—some units are tuned for the reach
endpoint only later into the delay period and, consequently, do not
pass the ANOVA tuning test. Since our recordings were performed
with low-impedance (�100–250 k�) electrode arrays, there were
significantly more multineuron units than single-neuron units avail-
able overall. The relative numbers of these two types of units were
consistent with our previous studies (25–35 single-neuron and 60–80
multineuron units for the 100-ms integration window). Furthermore,
although the multineuron units were not always of the most pristine
quality as they may have been if recorded from high-impedance (�1

2 We use the same screening procedure when comparing performance of
classic Gaussian, classic Poisson, and FA-based algorithms, even though units
that do not pass the ANOVA test may potentially capture information about
other behavioral or cognitive factors. These units could provide further benefit
for the FA-based algorithms, but we forgo that possibility so that all algorithms
use exactly the same data.

Acquire Touch 
Acquire Fix

Target Cue 
Delay Period

Go Cue Movement Period 
Target Acquired

200 ms

H

E

A

B
Acq Touch 190˚ 30˚ 150˚ Go Cue Go CueReach Reach30˚ 110˚Acq Touch

FIG. 2. Behavioral task. A: depiction of the standard instructed-delay reach trial. B: example of 5 consecutive trials in our prosthetic cursor data set. Illustration
was adapted from Santhanam et al. (2006a) (with prosthetic cursor omitted for clarity). The break between the 3rd and 4th trials constitutes an intertrial interval
(500–1,200 ms) that occurs after real reaches, providing time for the monkey to receive his juice reward and return his hand to the center of the screen to start
a subsequent trial. The illustrations show the monkey’s arm state relative to the visual stimuli. The colored timeline below depicts the various stages of each trial:
gray corresponding to the initial period of a trial before the target is shown, orange corresponding to the delay period, and green corresponding to the time after
the go cue. The hand (H) and eye (E) positions are graphed throughout all 5 trials, with blue and red lines showing the horizontal and vertical coordinates,
respectively. Full range of scale for these data is �15 cm from the center touch cue. Trials were from experiment H20041106.4.

TABLE 1. Typical number of units tuned for reach endpoint for
four example data sets

Data Set Number of Units for Given Plan Period, Tint

25 ms 50 ms 100 ms 200 ms

G20040428 74 99 117 138
G20040429 99 126 136 172
H20040916 56 87 125 158
H20040928 60 93 127 156

The first letter in each data set designates the monkey (monkey G or monkey
H) and the subsequent digits denote the calendar date of the particular data set.
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M�) single electrodes, these units were included as long as they
passed the tuning test.

Overview of the decoding process

The goal was to develop a system that is able to predict the reach
target given only the neural data recorded from the implanted elec-
trode array. The general approach is as follows. First, we exploit the
relationship between the neural activity and the reach endpoint; as a
simple example, a neuron may be active for reaches to leftward
endpoints and inactive for reaches to rightward endpoints. Addition-
ally, the precise activity can be variable on any given trial due to a
number of ancillary factors, such as behavioral correlates, attention to
the task, and spiking noise. We model this relationship between neural
spiking and reach endpoint, encompassing the non-endpoint-related
variability, using a probabilistic framework.

An initial set of “training” trials is collected from which both the
neural activity and reach endpoint are used to identify the parameters
of the probabilistic model. The model defines how likely it is to
observe a specific set of neural activity given a selected reach
endpoint. Traditionally, this model has been Gaussian (usually with
no covariance) or Poisson; here we introduce a new type of con-
strained correlated Gaussian based on FA. Finally, we decode the
reach target for each “test” trial by choosing the most probable target
given the observed neural data. During this prosthetic decoding phase,
the system is blind to the final reach target and must predict it from
neural activity (and the fitted neural model) alone. Decoding error is
computed as the percentage of test trials for which the predicted reach
endpoint did not match the actual reach endpoint. In our experiments,
we reserved approximately half the trials recorded for reaches to each
target to serve as test data.

Figure 3 provides a high-level overview of the decoding process.
The top panel shows the training procedure and the bottom panel
shows the decoding procedure. In the following text, we start by
describing the decoding procedure—this process is agnostic to the
neural models chosen for the decoding algorithm. Then, we cover the
probabilistic neural models that can be plugged into the decoding
procedure.

Reach endpoint classification

We used a standard maximum a posteriori (MAP) decoding (Zhang
et al. 1998) to infer the subject’s intended reach endpoint given the
neural data. Take S to be the total number of reach targets (S � 8 for
our eight-target data sets) and s to be an index corresponding to reach
endpoint; s can take the values {1 , . . . , S}. For each experimental
trial, we counted the number of spikes observed from each neural unit

within the neural integration window. These counts were assembled
into a q-dimensional vector y, where q is the number of neural units.

The intended reach was decoded from this vector by finding the
most probable target ŝ using a probabilistic model linking neural
activity and reach targets. Symbolically

ŝ � argmax
s

P�s � y� (1)

where P(s � y) represents the probability of the reach target being s
given the observed neural data y. Bayes’ rule can be used to express
Eq. 1 in terms of the neural model P(y � s), which is the probability of
observing the current set of spike counts y from the electrode array if
the upcoming reach endpoint is indeed s, together with the distribution
of reach targets used in the experiment P(s) and the total distribution
of spike count vectors P(y)

ŝ � argmax
s

P�y � s�P�s�

P�y�
(2)

If each reach target is used with equal probability in the experiment,
P(s) is constant. Under these conditions, the most probable target in a
trial is that for which the associated distribution of spike-count vectors
assigns highest probability to the counts observed

ŝ � argmax
s

P�y � s� (3)

The success of the decoder clearly depends on the selection of a good
model P(y � s) for the spike counts associated with each reach target.

Standard Gaussian and Poisson models

The most commonly used probabilistic models for spike counts are
Gaussian and Poisson. For the Gaussian distribution, similar to May-
nard et al. (1999), we have the following mathematical expression

P�y � s� � ��y; �s, Rs� �
1

�2��q/2 � Rs � 1/2

exp��
1

2
�y � �s�	Rs

�1�y � �s�� (4)

where, again, y is the vector of spike counts for a single trial, �s is a
q-dimensional mean vector, and Rs is a q 
 q covariance matrix. Here,
and throughout, we use the notation A	 for A transpose. The parameters �s

and Rs are fitted to the mean and variance of the training data for reach
endpoint s. Here, �s is the mean of the distribution associated with

���������� �	�
���	��� Training trials {1...N}

�	�
���
�
��y1...yN�
�	
����
�	����s1...sN�

A

B

P � s | y � = P �y | s�P �s�
P �y �

1 2 3 4 5 6 7 8 s

P �s |y�

����� ���� �	�
� �	���

��
�	������	�

�	������ ����	�� �� ���� ���
��	�
�	� �
���	� �	�	��	� �
�	�

P �y | s������	�
�����	�  ��
�������������	!����	�
���
�
����
���!	�	
����
�	� FIG. 3. Pictorial overview of the decoding pro-
cess with details provided in METHODS. A: training
stage where the neural spiking data are used in
conjunction with the known reach endpoints to fit a
probabilistic model of neural data. B: classification
stage where the most probable reach endpoint is
selected using the recorded neural data.
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target s. If there were no influence of other behavioral correlates,
internal cognitive correlates, spiking noise, or other perturbations, this
would give the number of spikes that each neuron would reliably
produce when the subject reached to that target. The Rs matrix allows
for the observed spike counts to be perturbed from �s on a trial-to-trial
basis, where large perturbations from the mean are considered less
probable.

In practice it is difficult to fit Rs as a full covariance matrix; there
are too many elements in the matrix and too few training trials. This
leads to the risk of overfitting the training data and thereby reducing
decoding performance for the test data. It is convenient to constrain
the covariance matrix (Rs) to be diagonal to avoid this problem. A
diagonal covariance matrix can model only independent variation in
the spike counts of different cells. This is a clear limitation of such a
Gaussian model. Note that Maynard et al. (1999) fit a full covariance
matrix for one of their analyses and they were able to gain perfor-
mance improvements in a classification task similar to ours. However,
their data set contained many fewer neurons (10 s vs. 100 s) and also
used a substantially larger integration window (600 vs. as little as 25
ms). The approach of fitting a full covariance matrix would not be
effective for our data sets. One approach to avoiding overfitting might
be “regularization” (e.g., Hastie et al. 2003), in which a penalty term
is introduced (sometimes interpreted as a prior distribution) to prevent
extreme excursions in the parameter value. An alternative in this case
would be to parameterize the covariance matrix, reducing the effective
number of degrees of freedom that need to be fit. It is this second
approach that we explore later in this section.

Another common approach for modeling the spike counts of neu-
rons is to fit the data to a Poisson distribution (Dayan and Abbott
2001). The probability function can be expressed as

p�y � s� � �
i�1

q

p�yi � s� (5)

p�yi � s� �
e��s

i
��s

i�yi

yi!
(6)

where yi is the spike count for neural unit i in a single trial and �i is
the mean spike count fitted to the training data for reach direction s.
By construction, all trial-to-trial variability is independent, and the
model cannot account for correlations between neural observations.

Simple verifications with our data sets confirmed that both Gauss-
ian and Poisson models are reasonable fits. Historically, Poisson-
based algorithms have been found to perform better than Gaussian-
based ones for decoding applications (Brockwell et al. 2004; Hatso-
poulos et al. 2004; Santhanam et al. 2006a). Our output variables are
the spike counts from the recorded neurons and these counts are by
construction nonnegative integers. The spike counts can be relatively
low in some cases (e.g., fewer than five spikes) and are conventionally
considered to be better fit to a Poisson distribution. One might suspect
that the data are not well suited for a Gaussian distribution, especially
since a Gaussian distribution has nonzero probability density for
noninteger numbers, as well as negative numbers. However, a simple
solution of preprocessing the neural spike counts via a square-root
transform can make the data a better fit for a Gaussian distribution
(Thacker and Bromiley 2001). We use this square-root transform
whenever using Gaussian-based decoding algorithms in this study.

Factor-analysis modeling

MODELING SHARED VARIABILITY. The diagonal Gaussian and Pois-
son models are constrained to treat all trial-to-trial variation as
independent between cells. A model that could successfully capture
spike-count correlations within the population might well yield a more
accurate decoding algorithm. We argued earlier that to fit a Gaussian
model with a full covariance matrix to a large population of cells

would require an impractically large number of trials. Instead, we
propose to use a parameterized form of covariance matrix, which
models correlations in a limited number of principal directions. The
form we use derives from a standard statistical technique called Factor
Analysis, or FA, where shared variance between observed quantities
are modeled as a linear function of unobserved factors.

For our prosthetic system, the observed variables are the neural
spiking data that we record from the electrode array. The underlying
factors represent the physical, cognitive, or cortical-network states of
the subject that are uncontrolled or effectively uncontrollable. We can
use the larger number of observed variables to help triangulate the
smaller number of unobserved factors in the system. FA is a well-
established technique of multivariate statistics (e.g., Everitt 1984;
Roweis and Ghahramani 1999). It is a popular tool in the social
sciences (Brown 2006) and epidemiology research (e.g., Shmulewitz
et al. 2001). We recapitulate the method here in the context of our
prosthetic decoding application.

For each experimental trial, as before, we collected the (square root
of the) number of spikes observed from each neural unit within the
neural integration window into the vector y. We also consider an
abstract set of underlying factors (also known as “latent dimensions”),
which are assembled into a vector x. This vector lies within a
lower-dimensional p-dimensional space; in other words, there are a
total of p underlying factors. We take these factors to be Gaussian
distributed, independent, and of unit variance around 0 (in fact,
assuming any other nondegenerate Gaussian distribution would yield
the same probabilistic model). The observation y is also taken to be
Gaussian distributed, but with a mean that depends on the hidden
factors x. The complete model is as follows

P�x� � ��x; 0, I� (7)

P�y � x, s� � ��y; �s � Csx, Rs� (8)

As in Eq. 4, �s contains the number of spikes that each neuron would
produce for endpoint s, if there was only endpoint-related variability
in the system, and Rs is a diagonal matrix that captures the indepen-
dent variability present in y from trial to trial. However, there is now
an additional mechanism by which trial-to-trial variability can emerge
in the neural observations: specifically, the neural data vector y is
perturbed by a linear function of the underlying factors. The matrix Cs

is a q 
 p-dimensional matrix that provides the “mapping” between
the factors and the observations. Given that the underlying factors are
shared between the observed neural units, there is a predefined
correlation structure between the neural units built into the model;
integrating over all possible x, we can obtain the likelihood of the data
y for a reach endpoint s

P�y � s� � ��y; �s, CsC	s � Rs� (9)

Equations 7 and 8 are in fact the same form used for a probabilistic
principal component analysis (PCA) model (or rather, sPCA3). Stan-
dard PCA will be familiar to readers as a simple tool used to find the
“dimensions that matter” (or rather, the dimensions of greatest vari-
ance) within a multidimensional data set. Similarly, the neural model
described by Eqs. 7 and 8 attempts to capture the underlying factors
that most heavily influence the trial-to-trial shared variability in the
neural observations. Both sPCA and FA can be viewed as effective
ways to parameterize a full covariance matrix for the high-dimen-
sional observations y. Indeed, Eq. 9 implies that the covariance of y
is CsC	s � Rs for a reach endpoint s. The first term in the covariance,
CsC	s, captures the shared (or “common-mode”) variability across the

3 The “sensible” principal component analysis (sPCA) model is a probabi-
listic approach to PCA and yields the same mapping between latent states and
observations as that of conventional PCA. Roweis (1998) provides one
mathematical demonstration of this. This algorithm is also known as probabi-
listic PCA (pPCA) (Tipping and Bishop 1999).
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neural population. The second term, Rs, captures the remaining
unexplained variability, which is assumed to be independent across
neurons. It includes biophysical spiking noise and other nonshared
sources of variability. (We briefly discuss the reason for choosing FA
over sPCA in the APPENDIX.)

MODEL FITTING. The model’s parameters (�s, Cs, Rs for each endpoint
s) are fit by maximum likelihood using the collection of observed neural
data (y) and the final reach endpoint (s) across all trials in the training data
set.

Although P(y � s) is Gaussian (Eq. 9), the parametric form of the
covariance makes direct calculation of the maximum-likelihood pa-
rameters difficult. However, they can be found using a standard
algorithm for models that include unobserved variables (here, the
factors x), called expectation–maximization (EM) (Dempster et al.
1977). The algorithm is iterative and is run until convergence is
reached. The exact fitting procedures for FA are fully described
elsewhere (Ghahramani and Hinton 1997; Roweis and Ghahramani
1999) and are omitted here for the sake of brevity.

CLASSIFICATION. When decoding test trials, we can use the maxi-
mum-likelihood estimator previously described (cf. Eq. 3)

ŝ � argmax
s

P�y � s�

� argmax
s

1

� CsC	s � Rs � 1/2

exp��
1

2
�y � �s�	�CsC	s � Rs�

�1�y � �s�� (10)

where Eq. 10 follows directly from Eq. 9. We refer to this approach
as FAsep since there is a separate Cs and Rs per reach target s.4 To
reiterate, the FA model provides a method by which we can approx-
imate the covariance structure of our observed variables without
fitting a full covariance matrix. Once we have fit the model, the
decoding procedure does not rely on finding the underlying factor
vector (x), but rather operates solely with the distribution P(y � s).

MODEL SELECTION. One open question is how to select p, the
number of underlying factors. With too many factors in the model, the
model parameters will be fit to any idiosyncratic correlation structure
in the training data and these features may not appear in the test data.
If p is too small (i.e., too few factors), the model will be unable to
capture all underlying correlation present in the training data. One
must ensure that the model is not “overfit” to the training data and that
it instead generalizes well for new (test) data. The choosing of the
optimal p, or p*, is part of the process of “model selection.” It is
important to keep in mind that the underlying factors identified for
each model are abstract. The factors constitute a vehicle by which we
are able to describe shared variability—the exact number of factors
selected does not necessarily have physical significance. The model
selection procedure is a simple, necessary step to ensure that a model
fit with the training trials will perform well when decoding the test
data.

We used the standard approach of partitioning data into training and
validation sets, to find the value of p beyond which overfitting became
a problem (Hastie et al. 2003). As mentioned earlier, each data set was
split approximately into two equal halves, one to serve as a training set
and the other as a test set. The trials in the training set were further
divided to perform a fivefold or tenfold cross-validation. For example,
in fivefold cross-validation, roughly four fifths of the training trials
would be used to train the FA model and one fifth to validate the
prediction error of the model. This would be repeated five times until

all of the original training set was used for validation. A series of
models, each with a different number of underlying factors p, were
tested using this cross-validation method. The p* was selected by
identifying the model with the lowest decoding error. The perfor-
mance of this one model was then assessed on the test data, to
compare the classification performance of the optimal FA model
against the traditional Gaussian and Poisson models.

Multitarget extension

The FAsep approach to modeling the multiunit data described by
Eqs. 7 and 8 is a straightforward extension to the standard Gaussian
model of Eq. 4. However, one might intuit that reach endpoint could
simply be another factor (or set of factors) included in the vector x,
rather than being treated separately in the output space as in Eq. 8.
Also, the FAsep model has the disadvantage of requiring a large
number of parameters. There is a separate Cs and Rs matrix per reach
endpoint—if there are 100 neural units, 8 targets, and 2 factors, the
approach will require the fitting of 100 
 8 
 (2 � 1 � 1) parameters,
where the terms in the sum correspond to the contributions from Cs,
Rs, and �s. The number of training data scales with the number of
neural units and targets, so in effect there are four parameters to learn
for each unit and reach endpoint; that is, if there were 60 training trials
per reach endpoint, we would have about 15 individual data measure-
ments per parameter that needed to be estimated.

As such, we developed a second, novel approach to FA that shares
the same output mapping between target locations and incorporates
the separation of reach endpoint through the shared latent space. We
formalize this model as follows

P�x � s� � ��x; �s, I� (11)

P�y � x� � ��y; Cxn, R� (12)

where �s is now a p-dimensional vector that describes the reach-
endpoint influence on the neural data within the lower-dimensional
space. The C matrix is shared across reach endpoints, thereby unify-
ing the effect of endpoint-related and non-endpoint-related factors on
neural data. For each trial, the endpoint-related effect on the neural
observations is C�s, whereas the non-endpoint-related factors perturb
the observations by C(x � �s). As before, R is diagonal and
describes the independent variability. We refer to this model as
FAcmb, since the output mapping is “combined” across reach
targets. We modified the standard FA model-fitting procedure to
account for the new form of FAcmb. An outline of the derivation is
provided in the APPENDIX.

Figure 4 shows an example of how these unified factors might
manifest themselves over many trials.5 There are three abstract factors
that capture both endpoint and non-endpoint-related influences on the
neural data y (which is not shown and is much higher dimensional).
Each colored cloud of points corresponds to a different reach end-
point, with trials to a given endpoint clustered next to one another.
Note that even in this three-dimensional instantiation of FAcmb, there
is visible separation between the clouds, suggesting that it will be
possible to discriminate between endpoints.

Although such a visualization is helpful in building intuition, to
decode the reach endpoint for test trials, we express Eqs. 11 and 12 as
P(y � s) and use the same maximum-likelihood techniques from Eq. 3

4 Note that the overall model for y is very similar to the “mixture of factor
analyzers” proposed by Ghahramani and Hinton (1997), except that FAsep

allows for a separate covariance Rs per mixture component.

5 We fix the number of factors in this example to be three to allow for
convenient plotting of the data; ordinarily the number of factors (p) would be
optimized using the model selection procedure described earlier.
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ŝ � argmax
s

P�y � s� (13)

� argmax
s

1

� CC	 � R �1/2

exp��
1

2
�y � C�s�	�CC	 � R��1�y � C�s�� (14)

The number of parameters in this model for 100 neural units, 8
targets, and 16 latent dimensions6 is 100 
 (16 � 1) � 8 
 16, where
the second term corresponds to the parameters arising from the
latent-space means �s. This yields about two parameters per unit per
target. That is, if there are 60 training trials per reach endpoint, there
are now on average roughly 30 individual data measurements avail-
able to estimate each parameter. For interested readers, we also
provide a brief discussion of signal-dependent variability in the
context of FAsep and FAcmb in the APPENDIX.

Poisson likelihood model

Earlier, we discussed how traditional Poisson-based models can be
more effective than Gaussian-based models of cortical neural data
(i.e., Eq. 6 vs. Eq. 4). Might this also be the case for the above-cited
FA approaches? In the following text, we briefly describe how we
adapted the FA models to accommodate Poisson statistics. We call
this family of models “Factor Analysis with Poisson Output” (FAPO).
Deviating from Gaussian statistics can be mathematically challenging.
The short summary is that Eqs. 15 and 16 describe a model analogous
to FAsep, which we call FAPOsep. Similarly, Eqs. 18 and 19 constitute
the FAPOcmb model.

To provide one potential motivation for Poisson statistics, note how
the lower-dimensional x in Eq. 7 is projected to the higher-dimen-
sional observational space in Eq. 8; on a given trial, the mean of the
observed data vector y is determined by the particular x on that trial.
However, the variance of the neural vector y does not change (R is
fixed regardless of x), and therefore the model is unable to capture the
Poisson-like relationship between the mean and the variance as the under-
lying factors exert their influence. Furthermore, because the neural spike
counts are small nonnegative integers, the Gaussian distribution may
not be the best description of the data.

One strategy is to replace the Gaussian observational model of FA
with a point-process or Poisson likelihood model (Smith and Brown
2003; Yu et al. 2006). Taking this approach, the model can be written
as follows

x � ��0, I� (15)

yi � x, s � Poisson �h�cs
i �x � ds

i��� for i�1, . . . , q (16)

As before, x represents the abstract underlying factors. The exact
mapping from factors to observations follows from a linear transfor-
mation on x using the p-dimensional scaling vector ci and the scalar
offset di. This provides a proxy for the instantaneous firing rate for the
neural observations yi, where i indexes the particular neural unit of
interest. The constant � is the nonnegative time-bin width. The
function h ensures that the mean firing rate argument to the Poisson
distribution is nonnegative. This particular instantiation is referred to
as FAPOsep, since there is a separate ci and di for each reach target s.

The Poisson distribution—along with the nonlinear mapping func-
tion h—makes an analytic solution to the EM algorithm intractable.
Thus we must use approximations when performing the EM algo-
rithm; we refer to previous work that uses the same techniques to fit
such functional forms (Yu et al. 2006, 2007). To find the most
probable reach endpoint, we must compute P(y � s) and apply the
maximum-likelihood formula of Eq. 3. In general form, the formula-
tion is

ŝ � argmax
s

P�y � s� � argmax
s

�
x

P�y � x, s�P�x�dx (17)

An analogous model to FAcmb can be formulated and is dubbed
FAPOcmb

xn � s � ���s, I� (18)

yi � xn � Poisson �h�ci �xn � di��� for i�1, . . . , q (19)

Since these Poisson models are not the central thrust of this work, we
refer the reader to the full derivation of FAPOcmb, available in an
on-line Technical Report (Santhanam et al. 2006b).

R E S U L T S

Model selection

We first choose the number of abstract factors (p) that will
result in optimal decoding performance. Conceptually, we
must ensure that we have enough factors to sufficiently de-
scribe the shared variability in the data but not too many factors
that we overfit the training data. This a necessary step before
we can compare FA models to the traditional Gaussian and
Poisson models in the next subsection. We examined two data
sets, G20040401 and H20040916, for which there were 185
and 200 total trials per reach target, respectively. This yielded
around 80 training and around 20 validation trials per reach
target for each cross-validation fold. A neural integration
window of 250 ms was used for this particular analysis,
although we saw similar results for smaller integration win-
dows as well.

Figure 5A shows the validation performance for these two
data sets as a function of p when fitting the FAsep algorithm.
The performance for p � 0 corresponds to a classic Gaussian
model where there is no Cs matrix and only a diagonal
covariance matrix, Rs, per reach endpoint. The best validation
performance for FAsep was obtained for low p: p* � 1 for

6 As will be shown in RESULTS, more latent dimensions are required for
FAcmb than for FAsep.
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FIG. 4. Visualization of a combined FA model (FAcmb) with a 3-dimen-
sional latent space. Each point corresponds to the inferred x for a given trial.
Axis scaling is determined by the fitted model. The coloring of the data points
denotes the upcoming reach target. Clusters correspond to different reach
endpoints. Analysis performed on data set G20040428.
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G20040401 and p* � 3 for H20040916. The results show that
as p is increased beyond p*, the performance steadily declines.
Overfitting is an issue for even relatively small values of p.
Why might this be? There are surely many factors that influ-
ence the upcoming reach—for example, reach direction, dis-
tance, curvature, speed, and force. However, for our data set,
reach trajectories to the same endpoint were highly similar.
Second, the shared variability (captured by trial-to-trial mod-
ulation of the factors) may be small relative to the independent
variability. Given a relatively small number of neurons (�100)
and training trials for each reach target (�80), it is likely that
we are unable to identify more hidden factors without poorly
estimating the model parameters and overfitting. The penalty
for overfitting is evident; by p � 30, all of the benefits from
using FAsep over the classic Gaussian approach (p � 0) are
lost.

We performed the same sweep of p for FAcmb and the
validation performance is plotted in Fig. 5B. The best valida-
tion performance for the combined FA model was obtained for
higher p than for FAsep: p* � 31 for G20040401 and p* � 12
for H20040916. Although at first it seems that the optimal
number of factors for G20040401 is significantly higher than
that for H20040916, one can see that the validation perfor-
mance reaches a floor around p* � 15 for the G20040401 data
set. There is negligible improvement when increasing the
dimensionality past that point that, combined with the fact that
performance degradation due to overfitting in the H20040916
data set is relatively minor, demonstrates that the FAcmb model
is less sensitive to the exact choice of p than in FAsep. For
interested readers, we provide a brief discussion on why p*
might be larger for FAcmb than that for FAsep in the APPENDIX.
This is a side issue since the end goal is to optimize decoding
performance and we chose the best p in that regard for each of
FAsep and FAcmb.

Comparison to classic decoding algorithms

Next, we compared the performance of four different decod-
ers grouped into two pairs. One pair consisted of the classic,
independent-Gaussian and -Poisson models. The second pair
was the FA-based models, FAsep and FAcmb. We computed
decoding accuracy based on an integration window length of
250 ms. These are the central results of this study. For the
classic Gaussian and Poisson algorithms, half the trials in each
data set were used to train the model parameters and the model
was used to predict the reach endpoint for each of the remain-
ing trials in the data set. For the FA-based algorithms, the
training set was first used to select the optimal dimensionality
p* using fivefold cross-validation and the training set was then
used in its entirety to fit a model with p* dimensionality. As
with the classic algorithms, the fitted model was finally applied
to the test data to compute the average decoding performance.

Figure 6 shows the relative performances of these four
algorithms. There were grand totals of 1,024 and 528 test trials
for the G20040429 and H20040928 data sets, respectively. For
data set G20040429, the classic Gaussian7 and Poisson algo-
rithms have roughly the same performance, whereas for data
set H20040928 the classic Gaussian algorithm has the worst
performance, with roughly 5% worse accuracy than the classic
Poisson algorithm. (Most often, especially with data sets from
monkey H, the classic Gaussian algorithm showed worse
performance than the classic Poisson algorithm, likely due to
lower firing rates observed in the monkey H data sets.) The
FAsep algorithm reduced the decoding error for monkey G’s
data set by nearly 10%, but had only a modest improvement for
monkey H’s data set. The FAcmb algorithm showed by far the
best performance. Our novel decoder was able to drastically
reduce the decoding error down to only about 5%.

7 Recall that the data are first square-rooted before being used to fit the
Gaussian model.
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We further explored whether FAcmb was capable of predict-
ing reach endpoint more accurately in several other data sets.
For this purpose, we used an integration window of 200 ms,
which was a similar window length to the 250 ms previously
used. We examined 8 data sets from monkey G and 18 data sets
from monkey H. Baseline performance was taken to be the
average decoding error from the classic Poisson algorithm. We
applied the FAcmb algorithm to the same data sets and com-
puted the reduction in decoding error or improvement in
overall decoding accuracy. The results are plotted in Fig. 7.
The FAcmb algorithm improved performance by 6–10% in 11
data sets and �10% in 7 data sets. No data sets showed a
degradation in performance when using FAcmb over the classic
Poisson algorithm. This was not the case for FAsep, where for
a few data sets in monkey H, the algorithm performed worse
than even the classic Poisson decoding approach, again possi-
bly due to the lower firing rates observed in the monkey H data
sets.

We also performed a simple control to confirm that the
shared variability that we are modeling was not simply an
uninteresting artifact of poor spike classification. If the spike
separation on each electrode were not perfect, there could be an
increased amount of correlated noise between neural units on
the same electrode. To better explore this question, we re-
stricted our analyses to include only the best unit (either single
neuron or multineuron) from each electrode. For data set
H20040928, we found that a classic Poisson algorithm exhib-
ited a decoding error of 26.3% for an integration window of
200 ms. The FAcmb algorithm was able to achieve a decoding
error of 16.9% using the same data. We saw significant
improvement in performance even in this restricted scenario,
reducing the potential concern that the model was simply
capturing correlations that are a by-product of poor spike
classification.

Finally, we investigated the benefits of FAcmb for conven-
tional delayed-reach data sets (i.e., data sets in which there was
no intermixing of high-speed reach endpoint cues). For one
data set (G20040508), where we used an integration window of
200 ms, there was a modest performance improvement for
using FAcmb (reduction of 5.3% error). This is relatively
unsurprising for two reasons. First, there is not as much
variability in the presentation of the target cue, thereby leading
to a relatively nonvariable experimental environment for the
subject. Second, for these data sets, performance is often
already high with classic Poisson decoding (91.6% decoding

accuracy). We saw similar results for three such data sets from
monkey H.

Integration window size

All of the performance results reported so far have been
based on neural integration windows of 200 and 250 ms. In our
previous work (Santhanam et al. 2006a), however, we showed
that even shorter integration windows are preferable when
optimizing the information throughput of a prosthetic system.
As such, we tested the performance of the FAcmb decoder as a
function of the integration time (Tint), beginning 150 ms after
target onset. Figure 8 shows a comparison between the simple
Poisson-based decoder and the FAcmb decoder. Integration
window durations of 25, 50, 100, 150, 200, and 250 ms were
tested. A separate FAcmb model was fit for each Tint, first using
10-fold cross-validation to select the appropriate p* for each.

The performance differential between simple Poisson-based
decoding and FAcmb decoding was noticeable across integra-
tion window lengths, but most appreciable with the longest
integration windows. For monkey G, the Poisson-based algo-
rithm has performance roughly similar to that of FAcmb for
Tint � 25 ms, although for monkey H, this relationship extends
up to Tint � 50 ms. For these smaller windows, the spike counts
for the neural units can be rather low. For example, in a time
interval of [150, 200] ms after target presentation, the spike
counts for a unit are most often only 0, 1, or 2. How might this
affect the performance of FAcmb? The FA model assumes that
the observed neural variability comprises a shared component
CC	 (from the uncontrolled or unobserved factors) and an
independent component R (from the biophysical process of
generating action potentials and other nonshared noise
sources). Reducing the window length degrades our ability to
separate shared from independent contributions.

FAPOsep and FAPOcmb

Next, we compared FAPOsep and FAPOcmb to their coun-
terparts, FAsep and FAcmb, to see whether there might be
advantages to a Poisson-based FA approach. We again varied
the integration window length to explore the regime of low
spike counts, in which Poisson models usually perform better
than Gaussian models. Figure 9 shows the performance from
the four FA decoding algorithms. The performance of the
classic Poisson method is also shown as a baseline. The results
show that both FAsep and FAPOsep fare worse than the classic
Poisson algorithm for small windows in monkey G and for all
window lengths in monkey H. Conversely, the combined
approaches, FAcmb and FAPOcmb, show substantial perfor-
mance improvement over the alternatives, especially for larger
window lengths.

Surprisingly, the Poisson-based FA algorithms do not per-
form as well as the Gaussian-based versions. This is somewhat
counterintuitive since a Poisson distribution is thought to better
model neural data than a Gaussian, especially for small time
windows. The effects we saw could be due to one of two main
reasons.

1. The Poisson fitting procedure includes several approxi-
mations, which could result in a suboptimal fit, even when the
training likelihood increased with every EM iteration. Further-
more, in some cases, for FAPOsep, the training likelihood
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FIG. 7. Performance improvement with FAcmb across many data sets.
Plotted is a histogram of the difference in reach endpoint decoding error
between a classic Poisson-based algorithm and the FAcmb algorithm.
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would in fact start to drop after close to 100 iterations, albeit
slowly.

2. Ordinarily when spike counts are modeled using a Poisson
distribution, there is an implicit lumping together of shared and
independent variability. In both FAPOsep and FAPOcmb mod-
els, the Poisson distribution is used to model only the indepen-
dent variability. After separating out the shared variability, the
independent variability may no longer be Poisson distributed.
Furthermore, spike counts can sometimes be sub- or super-
Poisson (Churchland et al. 2006b; Shadlen and Newsome
1998). Gaussian-based models may better characterize the data
by not overconstraining the mean–variance relationship, al-
though it is difficult to directly assess this question since we do
not have a ground truth for the underlying data.

Ultimately, we were able to achieve good performance
improvements with the simpler FAcmb algorithm. There was no
strong motivation to use the more complicated FAPOcmb ap-
proach for our data sets. Investigation into the exact breakdown
and characteristics of shared and independent variability is left
to future work.

Training set size

Our last analysis was to examine the effects of training
size on system performance. Given that there can be a large
number of parameters to learn for the FA-based models, it is
possible that these models do not provide such dramatic
performance improvements over the classic models when
the training set size is restricted. This is especially of
interest since one may not be able to collect a voluminous
training set from paralyzed patients, since the patients can
suffer from fatigue or other medical issues. To investigate
this question, we divided each data set into three subsets.

The first subset was used to train the FAcmb model with p
dimensions. It is the size of this subset that was varied to
assess performance across different training set sizes. The
second set was used as a validation set to find the optimal
p*. The model with p* dimensions was then used to decode
the test trials in the third set. As before, the classic Poisson
algorithm was also used as a baseline comparison. For the
Poisson algorithm, the model was simply trained on the first
subset of trials and performance was computed with the
third set. The validation set was not needed since there is no
model selection phase for the Poisson algorithm. The data
integration window size for this analysis was 100 ms.

Figure 10 shows the results of varying the amount of training
data used to fit the model for two data sets, one from each
monkey. For monkey G, the classic Poisson algorithm shows a
consistent level of performance regardless of the training size.
The variation in decoding error is within the confidence inter-
vals and is therefore not statistically significant. Similarly, for
monkey H, the classic Poisson algorithm shows a fairly con-
sistent level of performance, excepting the very initial drop
representing a change from 15 to 30 training trials per condi-
tion. The FAcmb algorithm, however, shows steady improve-
ment as the number of available training trials increases.
Nevertheless, by 60 trials per condition there is a substantial
benefit for using FAcmb over the classic Poisson algorithm in
both monkeys: reduction of about 20% error for monkey G and
a reduction of about 10% error for monkey H.

D I S C U S S I O N

We investigated here the use of a more sophisticated decod-
ing algorithm in the hopes of achieving higher neural prosthetic
performance. FA techniques were proposed as a method to
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FIG. 9. Performance of new Poisson-based FAPOsep

and FAPOcmb algorithms. The performances with the
classic Poisson-based algorithm, FAsep, and FAcmb are
plotted for reference. The data integration window was
varied to see whether there was any advantage to FAPOsep

or FAPOcmb as lower spike counts were inputted into the
models. A: data set G20040429. B: data set H20040916.
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FIG. 8. Performance of the FAcmb algorithm as a function of
the data integration window length. Shading and embedded line
are the same as in Fig. 5. The performance with the classic
Poisson-based algorithm is plotted as a reference. A: data set
G20040429. B: data set H20040916.
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help better account for shared, correlated variability arising
from uncontrolled and unobserved aspects of the prosthetic
task and two methods were offered to help improve reach
endpoint prediction. Results showed that using an entirely
separate FA model for each reach endpoint (FAsep) was not as
effective as our novel approach of fitting a combined model to
the entire data set (FAcmb). The latter strategy requires fewer
model parameters and is able to aggregate data from all reach
endpoints to fit these parameters. As such, it may be less prone
to estimation error and overfitting. Surprisingly, the more
complicated extensions to support Poisson distributions ap-
peared to be unnecessary because the Gaussian-based models
performed better (even for Tint as low as 25 ms). This may have
been due to one or more reasons: the square-root transform
may mitigate the potential pitfalls with using a Gaussian
model, the approximations used for fitting the Poisson-based
models may have been detrimental, and/or the independent
variability may not be well described by a Poisson distribution.

The full utility of the FA methodology was demonstrated
with our BCI data sets where the task design had different
operating modes (BCI vs. reach trials). This task contained a
sufficient amount of shared variability such that conventional
algorithms were unable to achieve high levels of performance.
We could have fit an explicit model that accounted for the
speed of target presentations, but we instead chose to infer
abstract factors to demonstrate how effective this technique can
be when the nature of the covariates is unknown. FAcmb was
able to describe the shared variability in the task and signifi-
cantly outperform conventional methods. For a clinical pros-
thetic setup, the situation of mixing BCI and reach trials would
not be realistic since the patient would be paralyzed. However,
in a real-world setting, there can be many underlying factors
that modulate the neural observations, including the subject
altering the pace at which he or she uses the BCI, environmen-
tally induced distractions, or subconscious changes in the
subject’s motivation. FA can be one tool by which the system
designer can combat performance degradation. The computa-
tional overhead to using FAcmb primarily exists during the
training of the model. When decoding test trials, the decoding
procedure is nearly identical to decoding with a simple Gauss-
ian algorithm, except that the output covariance is no longer
diagonal [i.e., Cov (y) � CC	 � R instead of simply R].

The FAcmb algorithm also appears to be relatively robust.
The process of model selection to choose the optimal number
of factors did not show any sharp peaks in performance. The
performance increased rapidly as the number of factors p was
increased, but then did not drop drastically as p moved beyond
the optimum p*. In fact, the decline in performance past p* is

sufficiently gentle that a system designer could potentially
choose to skip the model selection process entirely (if it was
deemed too computationally expensive) and simply fix the
number of factors to, for example, p � 20. As seen in Fig. 5B,
such a choice of p, although not optimal, would still be able to
achieve close to optimal performance. In fact, the differences
in performance for values of p between p � 12 and p � 20 was
within the 95% confidence interval. We also found that it is
possible to achieve significant performance improvements with
a reasonable number of training trials per condition, demon-
strating that a human subject will not be required to perform
thousands of training trials to justify the use of FAcmb.

For those already familiar with other methodological studies
in the field of cortical neural prosthesis, we place our work in
context with these past studies here. Other work has explored
the use of state-space models as a foundation for decoding the
subject’s motor intentions. Primarily this has been applicable
to the decoding of arm trajectories (e.g., Brockwell et al. 2004;
Truccolo et al. 2005; Wu et al. 2006; Yu et al. 2007). These
studies start with a model that consists of a linear Gaussian
model of the arm state, followed by an either linear or nonlin-
ear mapping to the space of observed neural spiking data. The
models are trained based on trials in which both the underlying
arm state and the neural data are known. In the case of our
work, we are not using the latent state model to directly capture
the relationship between the arm state and the neural firing, but
rather we are using it to capture the variability induced by the
unobserved and uncontrolled parameters. When training our
model, we do not have access to the ground truth of x and must
infer it along with the model parameters C and R through the
EM procedure. The FA latent variables reflect aggregate net-
work activity. This stands in contrast to other models of
correlated activity that posit direct connections between ob-
served neurons or from a small set of unobserved neural units
(Kulkarni and Paninski 2007; Okatan et al. 2005).

Recently we published a Hidden Markov Model (HMM)
technique (Kemere et al. 2008) and either FAsep or FAcmb can
be complementary to this work. The primary objective of the
HMM algorithm is to help identify “neural-state transitions”
between baseline, plan, and move states, modeling the various
states in a discrete framework. The HMM model includes no
concept of continuous factor variables that create correlations
in the neural observations. In theory, one could potentially use
an FA approach to model correlation in the neural data, while
simultaneously using the HMM algorithm to identify state
transitions; we reserve this exploration for future work.

Our multitarget extension to FAsep is certainly specific to the
behavioral task performed by our subject. However, the con-
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FIG. 10. Effect of training size on performance of FAcmb.
The number of trials used to fit the initial model was varied, the
dimensionality of the model was chosen based on a fixed set of
validation trials, and the final performance was computed based
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are the same as in Fig. 5. The performance with the classic
Poisson-based algorithm is shown for reference. A: data set
G20040429. B: data set H20040916.
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cept itself is a simple one: there are underlying behavioral and
cognitive parameters that can diminish the performance of a
prediction algorithm, whether it be in the context of predicting
reach endpoint or the entire reach trajectory. The exact details
of how to extend an existing algorithm to use FA to “learn”
these underlying factors is of course specific to each algorithm.
Furthermore, provided that the factors are modeled as Gaussian
random variables and affect the observables through a linear
mapping, it is likely that one can rather easily incorporate such
a technique within other decoding frameworks. Although there
is no guarantee that the achievable performance improvements
in other contexts will be comparable to those seen in our data
sets, our work suggests that the overall strategy espoused here
is worth investigating if increasing prosthetic performance is of
paramount interest. Indeed, a similar approach has been taken
by Wu et al. (2008) to extend the Kalman filter framework so
that it can account for unobserved factors. The study shows an
improved performance that, like our own, is quite promising.

We chose to use a probabilistic framework and construct a
generative model a priori that we felt reasonably describes how
our reaching task relates to the neural data. A potential disad-
vantage, however, is that the training procedure maximizes the
likelihood of the observed data without assigning a cost for
how well or how poorly the model can classify the data.
Despite this drawback, the fact that our FA approach improves
the performance indicates that we may be revealing something
intrinsic about the system. (For now, we treat the factors as
abstract, although FA can potentially be a useful tool to help
discover new, or confirm existing, correlates in an experimen-
tal setting.) An alternate algorithmic strategy would be to train
a classifier that expressly accounts for misclassifications during
the fitting process (e.g., Ng and Jordan 2002). This is the
approach taken by several standard algorithms in the field of
machine learning, including neural network classifiers, support
vector machines, and Gaussian process classifiers. Further-
more, there is also the possibility of using a hybrid between
discriminative and generative methods (Raina et al. 2004). An
eventual comparison between the FA approach and these other
approaches would be fruitful and will help better frame the
broader influence of what we have shown here.

The performance improvement that we were able to achieve,
especially with the FAcmb method, was substantial. For several
data sets, the baseline performance was a 	20% classification
error rate when using the classic Poisson algorithm. These
error rates were routinely reduced to 5–10% when using our
FAcmb algorithm. For prosthetic tasks in which achieving high
single-trial accuracy is the primary objective, being able to
reduce the error rate to a mere 5% can have a dramatic impact
on the clinical utility of these systems for subjects with motor
disabilities. Combined with other improvements, including
HMMs for facilitating free-paced prosthetic control (Kemere
et al. 2008) and strategies for optimally placing the virtual
targets on the computer screen (Cunningham et al. 2008), we
hope that ongoing research will yield a substantial improve-
ment in the quality of life of patients.

A P P E N D I X

sPCA versus FA

Although sPCA and FA are very similar in form, sPCA constrains
the independent variances (i.e., elements of Rs) to be identical for

each neuron, whereas FA allows each neuron to have a different
independent variance. This distinction is important. The variance of
windowed spike counts is often considered to be proportional to the
mean spike count (e.g., Shadlen and Newsome 1998), where the
proportionality constant is about 1. Neurons with higher mean firing
rates often exhibit higher independent spiking variances. Although
applying a square-root transform to the spike counts can help stabilize
this variance relationship (Kihlberg et al. 1972), this process is
imperfect. Ultimately, sPCA allows for only a single independent
variance parameter across all neurons, whereas FA has the benefit of
more parameters in Rs to capture the richness in the data; as such, we
chose to focus on FA for our work.

Signal-dependent variability

Do the FA-based models contend with the possibility that trial-to-
trial variability could be signal-dependent? Recall that the reach
endpoint is the signal of interest. For FAsep there is a different FA
model per reach endpoint; thus the model of variability is, by con-
struction, already signal dependent. For FAcmb there is a single set of
factors for all reach endpoints. The nonreach-endpoint factors perturb
the reach endpoint signal (�s) with the same covariance, irrespective
of s (cf. I in Eq. 11). Similarly, the independent variability described
by R in FAcmb is also the same regardless of s. Thus FAcmb does not
directly allow for signal-dependent sources of variability.

Comparison of p* between FAsep and FAcmb

For FAsep we found usually p* 
3. For FAcmb p* most often lay
within the range of 10–35. Why might this be? We provide one
technically oriented explanation here. Intuition suggests that a well-fit
model of the form described by Eq. 12 should have the property that
the observation mean for a given target [i.e., E(y � s)] closely matches
the empirical mean of the data for that same target. In the case of
FAcmb the observation mean is C�s for target location s. The obser-
vations lie in a q-dimensional space, whereas the vector �s is in a
lower p-dimensional space and C is rank p. Thus the vector C�s lies
within a p-dimensional subspace spanned by the columns of C. Across
S targets, the S observation means can at most lie in an S-dimensional
subspace that includes the origin. Thus p may need to be at least equal
to S for the model to capture the appropriate target-specific observa-
tion means. For our data sets, where S � 8, we found that the
measured means were in fact linearly independent—thus 	8 latent
dimensions (p 	 8) were needed to describe them accurately. The
even higher values of p* that we find for FAcmb may possibly arise
from the greater statistical power afforded by combining data across
all the reach targets.

Mathematical derivations for FAcmb

This section provides the derivation of FAcmb. It is recommended
that the reader be first familiar with the process of using expectation–
maximization (EM) techniques for standard FA. Excellent overviews
are provided by Roweis and Ghahramani (1999) and Ghahramani and
Hinton (1997). Again, the model for FAcmb is

x � s � ���s, s� (A1)

y � x � ��Cx, R� (A2)

The random variable s is the reach target and has a discrete
probability distribution over {1, . . . , S} [i.e., P(s) � �s]. Given s, the
latent state vector x � �p
1 is Gaussian distributed with mean �s and
covariance s.

8 The outputs y � �q
1 are generated from a Gaussian

8 The use of s in the latent space distribution affords a more general model
than the choice of a fixed covariance I in the main text, but the simpler model
performed as well, and sometimes better, with fewer parameters to be fit.
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distribution, where C � �q
p provides the mapping between latent
state and observations and R � �q
q is a diagonal covariance matrix.
The variables xn and yn denote independent draws from this genera-
tive model over N trials. The set of all trials are denoted as {x} and
{y}, respectively. The random variable s is assumed to be known
during the training of the model.

E step. The E step of EM requires computing the expected log joint
likelihood, E [log P({x}, {y}, {s} � �)], over the posterior distribution
of the hidden state vector, P({x} � {y}, {s}, �k), where �k are the
parameter estimates at the kth EM iteration. Since the observations are
i.i.d., this is the sum of the individual expected log joint likelihoods,
E [log P(xn, yn, sn � �)].

The latent state and output observations are jointly Gaussian
given s

P� � yn

xn
� � sn	 � ���C�sn

�sn

�,�11 12

21 22
�	 (A3)

� �� � C�sn

�sn

�,�Csn
C	 � R Csn

sn
C	 sn

�	 (A4)

Thus the posterior distribution of the hidden state can be written as

P�xn � yn, sn� � ���sn
� 2111

�1�yn � C�sn
�, 22 � 2111

� 112�

(A5)

� ���sn
� �sn

�yn � C�sn
�, sn

� �sn
Csn

� (A6)

where �sn
� sn

C	(R � Csn
C	)�1. This conditional is a standard

property of the Gaussian distribution. The inverse in �sn
can be

computed efficiently using the matrix inversion lemma (Sherman–
Woodbury–Morrison formula)

�R � Csn
C	��1 � R�1 � R�1C�sn

�1 � C	R�1C��1C	R�1

(A7)

For observation n, let Qn be the Gaussian posterior latent state
distribution P(x � y, s, �k), which has mean �n and second moment �n

�n � E�xn � yn, sn
, �k�

� �
sn

k � �
sn

k �yn � Ck�
sn

k � (A8)

�n � E�xnx	n � yn, sn, �k�

� Var�xn � yn, sn, �k�

� E�xn � yn, sn, �k� E�xn � yn, sn, �k�	

� sn

k � �sn

k Cksn

k � �n��n (A9)

The expectation of the log joint likelihood for a given observation
can be expressed as follows

�n � EQn
�log P�xn, yn, sn � ��� (A10)

� EQn
�P�yn � xn� � log P�xn � sn� � log P�sn�� (A11)

� EQn��
q

2
log�2�� �

1

2
log��R�� �

1

2
y	nR

�1yn � y	nR
�1Cxn

�
1

2
x	nC	R�1Cxn �

p

2
log�2�� �

1

2
log��sn

�� �
1

2
x	nsn

�1xn � �sn

	 sn

� 1xn

�
1

2
�sn

	 sn

� 1�sn
� log P�sn�� (A12)

The terms that do not depend on xn or any component of � can be
grouped as a constant C, outside the expectation. Doing so, and
simplifying further, we have

�n � y	nR
�1C�n �

1

2
Tr�C	R�1C�n�

� �sn

	 sn

�1�n �
1

2
Tr�sn

�1�n�

�
1

2
y	nR

�1yn �
1

2
log��R�� �

1

2
�	sn

sn

�1�sn
�

1

2
log��sn

�� � C (A13)

The expectation of the log joint likelihood over all of the N
observations is simply the sum of the individual �n terms

� � EQ �log P��x�, �y�, �s� � ���

� 

n�1

N

�n

M step. The M step requires finding (learning) the �̂k�1 that satisfies

�̂k�1 � argmax
�

EQ �log P��x�, �y�, �s� � ��� (A14)

This can be achieved by differentiating � with respect to the
parameters �, as shown in the following text. The indicator function,
I(sn � s) will prove useful. Also, let Ns � ¥n�1

N I(sn � s).
State vector mean, for target s

��

��s

� 

n�1

N

I�sn � s��s
�1�n � s

�1�s� � 0

f�s
k�1 �

1

Ns


n�1

N

I�sn � s��n (A15)

● State vector covariance, for target s

��

�s

� 

n�1

N

I�sn � s��s
�1�1

2
�	n � �s�	n �

1

2
�s�	s	s

� 1 �
1

2
s

� 1	
� 0

f
Ns

2
s

�1 � 

n�1

N

I�sn � s�s
�1�1

2
�n � �s�	n �

1

2
�s�	s	s

�1

fs
k�1 �

1

Ns


n�1

N

I�sn � s��n � �s
k�1��s

k�1�	 (A16)

● Mapping matrix

Ck�1 � �

n�1

N

yn�	n	�

n�1

N

�n	�1

(A17)

Independent variance matrix

Rk�1 �
1

N
diag �


n�1

N

yny	n � Ck�1�ny	n� (A18)

where the diag operator sets all of the off-diagonal elements of a
matrix to zero.

Inference. Once the model parameters have been chosen, the
generative model can be used to make inferences on the training data
or new observations. For the training data, the hidden state vector x is
the only variable that must be inferred. The posterior distribution of x
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is a Gaussian, exactly as described previously. This yields a distribu-
tion Q with mean �sn

� �sn
(yn � C�sn

) and covariance sn
� �sCsn

.
Therefore the maximum a posteriori of x is simply �sn

� �sn
(yn �

C�sn
). The vector x is not required for decoding reach endpoint but

was useful in generating Fig. 4.
When performing inference for a new observation, the reach target

s is now unknown. The posterior distributions of both s and x, given
the data y, are of interest for decoding. The first of these distributions
can be expressed as follows

P�s � y, �̂��P�y � s, �̂�P�s � �̂�

��s

1

� CsC	 � R � 1/2

exp��
1

2
�y � C�s�	�CsC	 � R��1�y � C�s�� (A19)

To infer x given the data, the following derivation applies

P�x � y, �̂� � 

s�1

S

P�x � y, s, �̂�P�s � y, �̂� (A20)

where the first factor in the summation is the conditional Gaussian
(see Eq. A6) and the second is a weighting as shown earlier. Thus the
distribution of x given y (but not conditioned on s) is a mixture of
Gaussians.
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