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SUMMARY

1. Membrane parameters of an isolated neural cell body have been
determined by voltage clamp analysis. Data are expressed as membrane
ion-specific conductances, leak conductance, and capacitance.

2. Three ionic currents are present: Inward, II; and two operationally
distinct outward currents, IK and 1A. Both outward currents are ap-
parently carried by potassium ions.

3. Hodgkin-Huxley-like equations were solved for the discharge of two
sequential action potentials in response to a constant stimulus current.
The digital computer solutions are compared with action potential data
recorded from the investigated cell.

4. The computed and experimentally measured relationships between
firing frequency and stimulus current intensity are compared and are
linear over the same portion of the total frequency range.

5. Cell behaviour in the latter part of the interspike interval is domin-
ated by the conductance go while gNa and gK largely determine the
character of the action potential and the initial portion of the interspike
interval.

6. Prehyperpolarization ofthe membrane activates gA and the membrane
response to depolarizing current differs markedly from the response elicited
when no prehyperpolarization is imposed.

INTRODUCTION

The behaviour of gastropod neurone somas under voltage clamp condi-
tions may be analysed in terms of three conductance mechanisms, g1, gS,
and ga, described in the first two papers of this series (Connor & Stevens,
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1971a, b). The conductances gI and 9K correspond to the YNa and g] in
the analysis by Hodgkin & Huxley (1952), and exhibit qualitatively similar
behaviour; the third conductance, gA, has no counterpart in the Hodgkin-
Huxley analysis, and seems not to have been explicitly recognized in
previous experiments. Potassium ions appear to be the predominant
current-carrying ion for gA, its time constants are intermediate between
those of g, and qK, and, because it becomes inactivated at above approxi-
mately -40 mV, its predominant role in neurone behaviour is limited to
voltages in the subthreshold range.
The over-all goal of these investigations has been to provide an analysis

of repetitive firing mechanisms in a specific preparation. In order to demon-
strate that the properties of the conductances described in the preceding
papers can indeed account for the repetitive firing exhibited by this
neurone, it is necessary to produce Hodgkin-Huxley-like equations de-
scribing the voltage clamp behaviour of the cell and then show that the
solution of these equations does indeed predict accurately the neurone
behaviour under current clamp conditions. This programme is carried out
in the present paper, and the analysis reveals that the three conductance
mechanisms can account for the repetitive firing observed in these experi-
ments. We conclude that, immediately following a spike, gY dominates the
neurone's behaviour, and as the increased gY decays toward its resting
values, gA is activated and predominates during the middle and latter part
ofthe interspike interval. The effect ofthe current through gA is to counter-
balance the currents through g, and the stimulus current and thereby
produce the typical membrane potential trajectory between action
potentials.
The analysis presented here is carried out in two parts. In the first

section of the paper, we shall present estimates for membrane capacitance,
the conductance of leakage channels, and describe, in turn, the empirical
equations for the behaviour under voltage clamp of g1,IA, and YKE
Because each of these conductances is to be represented as the product of
two factors, it will be necessary to describe the kinetic behaviour of each
factor in addition to its steady-state value as a function of membrane
potential. Descriptions take the form of graphs which give the value of
the parameter in question as a function of membrane potential. In the
second section of the paper these equations are solved and the appropriate
solutions are compared with the neurone's observed behaviour.

METHODS

We have attempted throughout to avoid pooling data from separate experiments,
but rather to predict a cell's response to applied current from the voltage clamp
analysis of only that cell. It is, however, difficult to obtain all the required data on
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FIRING AND VOLTAGE CLAMP DATA
one cell, and we have thus formulated the equations and compared predicted and
observed behaviour under current clamp conditions for only seven preparations.
In this paper we have presented primarily data from a single cell, the one most
completely analysed; the remaining six cells provide an entirely consistent picture.
To carry out a complete analysis over a full range of membrane potentials is very

difficult indeed, and we have thus concentrated our efforts on the range of membrane
potentials that are most important in repetitive firing, that is, between the potassium
equilibrium potential (- 63 mV) and the point at which the inward current mechan-
ism g, becomes strongly activated (-25 mV). Thus the equations to be presented
are most accurate in that range; above -20 mV we have not been able to achieve
equal accuracy for all parts of the description.

Because the currents which flow on a step change in membrane potential do not
settle completely as quickly as one would like, it has not been possible to measure
accurately the instantaneous voltage-current relationship over the entire relevant
-voltage range for these cells. The data available are consistent with the assumption
that the instantaneous voltage-current relationship is linear and we will thus
develop our formulation in terms of conductances rather than in permeabilities
(Dodge & Frankenhaeuser, 1959; Frankenhaeuser & Huxley, 1964) or membrane
current (Noble & Tsien, 1969a, b).
Thus the basic equation governing membrane behaviour is:

1(t) = C dt +gI(V- VI) +gK( V- FK) +gA(V VA) + L(V- VL)

where I is the applied current, C the membrane capacitance, V the membrane
potential, 9I, 9gI gA the variable conductances with associated equilibrium potentials
VI, VK, VA. gL is the leakage conductance and VL its equilibrium potential. Equi-
librium potentials were determined by the three methods described in the first
paper of this series and are designated by the numbers given there (Connor & Stevens,
1971 a).
Instead of describing the dependence of rate constants (our analogues of the

Hodgkin-Huxley a's and fl's) on voltage by empirical equations as Hodgkin &
Huxley (1952) did, we have chosen to specify this information by piecewise linear
approximations to the experimental data; the curves shown in Fig. 1, 2, 3, 4 and 5
are the ones used in calculations. Furthermore, we have described the temporal
development of processes in terms of time constants, analogous to the Hodgkin &
Huxley i's, rather than rate constants. Because we distinguish between three types
of voltage-sensitive channels, I, K and A, it is necessary to provide subscripts for
the time constants to specify the channel involved; in addition, the behaviour of
each channel will be described in terms of two underlying processes (analogous, for
example, to the Hodgkin & Huxley m and h), denoted by the letters A and B, so

a second subscript is required to indicate with which of these processes the time
constant is associated. The convention adopted is to double subscript each time
constant r, with the first subscript specifying the underlying process, and the second
subscript specifying the channel type. For example, TBK would be the time constant
associated with the B-process of the potassium channels, and rA would indicate
the time constant associated with the A-process ofthe A channels. On some occasions,
when the type of channel associated with a time constant is clear from the context,
the second subscript will be suppressed.

Equations have been solved on a digital computer with a programme which uses

a rectangular integration scheme. Time increments were changed over a large range
to discover the values giving rise to errors in integration, and the values actually

2-2
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used were always small compared to this. The accuracy of the integration programme
has been checked by computing the solutions to equations whose solutions are
tabulated.

RESULTS

SECTION 1
Membrane capacitance

Membrane capacitance was measured by injecting, under current clamp
conditions, a constant hyperpolarizing current, and then measuring the
initial voltage slope. Because gI and gK are constant under these circum-
stances, and g9 varies slowly if at all over the time required to make this
observation, C (the soma capacitance) should be given by the ratio of
applied current and the initial rate of change of voltage. The value of
capacitance thus obtained for the exemplar cell is 14 nF (measurement
uncertainty + 2 nF), and values for other cells characteristically ranged
between 12 and 35 nF. These values were found to be directly related to
size of the cell. The exemplar cell was approximately spherical, with a
diameter of approximately 250 tt.

Leakage conductance
Accurate values for the leakage conductance, YL, were difficult to obtain

because other conductances participate in the voltage-current relationships
over a very wide range of membrane potentials; above -40 mV, steady-
state inward and potassium currents are flowing, and below -40 mV
gA plays an important role. For very large hyperpolarizations, below mem-
brane potentials of - 100 mV (for example, see Ochs, 1967), the voltage-
current relationship becomes very badly behaved because of precipitous
and often unrepeatable or irreversible increases in membrane conductance.
In the vicinity of -40 mV, gA is almost completely inactivated, whereas
g9 and g are not appreciably activated. Thus, we have taken the slope
of the voltage-current relationship at this point to be the leakage con-
ductance, and have used the intersection of the leakage conductance line
with the voltage axis (point of zero current) as the leakage equilibrium
potential. In the exemplar cell the leakage conductance measured in this
way was estimated to be 0-049 1tmhos with an equilibrium potential of
-40 mV. Although this estimate is necessarily rather inaccurate, the total
leakage current is generally sufficiently small to make imprecisions in
estimates of gL and VL unimportant.
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Description of g1
In order to estimate the conductance gI as a function of voltage and

time it is necessary to separate the inward currents from the early phases
of the outward potassium currents. This separation is probably best
achieved when the potassium channels are blocked with TEA, a technique
which seems to leave the inward current unaffected. Although the pharma-
cological separation has been used in some cases, in the exemplar cell the
following alternative procedure was employed because it is too risky to
change solutions. The delay in activation of the potassium conductance
gK is sufficiently long in most instances (see later Discussion) that the
major part of the inward current flow is uncontaminated by IK. Thus, by
considering sufficiently short times, it is plausible to assume that the
currents flowing consist of only inward current, and leakage current (at
least for those situations in which 9A is essentially inactivated at the
holding potential). It will be recalled from a preceding paper (Connor &
Stevens, 1971a) that, after a brief delay, the inward current increases
rapidly to a peak and then decays with what appears to be an exponential
time course. The time constant of this decay was estimated from the
steepest slope ofthe decay, and a point in time three ofthese time constants
later was chosen as the steady-state value for inward currents. The con-
ductance gI was then estimated by subtracting leakage and any IA or IK
present from the measured total currents, and then dividing by the dif-
ference between the membrane potential and the inward current equi-
librium potential VI. This equilibrium potential, estimated by methods (1)
and (2), has a value of +45 mV.
The conductance g, rises after a delay to a peak and then decays

exponentially. It was found that an equation with the same form as that
used by Hodgkin & Huxley for 9Na is adequate to describe the inward
current mechanism in this membrane as well. Thus, go is given by

y1(VX t) = 1AI (V, t) B1(V, t), (1)

where gI is the maximum conductance, AI (V, t) is the activation (ana-
logous to the Hodgkin-Huxley m), and B1 (V, t) is the inactivation
(analogous to the Hodgkin-Huxley h). Activation and inactivation are
described by the first-order differential equations

TAIW) --dA ,t) +A, (V, t) = A, (V, oo),

dB -(V,t) (2)
TrBI(V dt +B1 (V, t) = B1(V, co),
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where rm is the activation time constant and TBI the inactivation time
constant. To describe gI, it is then necessary to estimate 9I, TAD, TBI'
AI (V, co) and B1 (V, co) from the experimental data.
To estimate the inactivation time constant TBI (V), semi-logarithmic

plots for the approach of empirically determined gI toward its steady-state
values were prepared for a range of clamping voltages. Straight lines were
fitted to the experimental points by eye, and the time constants TBI (V)
were determined. The values for the time constant of decay determined
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Fig. 1. A. Ordinate: inactivation time constant, TBI, for inward conductance
v8. membrane voltage (abscissa). Measurement procedure is described in
text. The straight line interpolation between data points shown in the figure
was used in computing solutions to the membrane equation and is employed
in all of the Figures of this section. B. Activation time constant, TAD' for
inward conductance (abscissa) vs. membrane voltage (ordinate). Temp. 50 C.
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in this way were compared with the preliminary estimates, and where the
more precisely determined time constants gave a significantly different
value for the steady-state current (at three time constants from the start
of decay) the process was repeated. The final estimates of TBI (V) are
shown in Fig. 1.

If the membrane potential is held at various levels and then stepped to
some fixed level, differences ingq (V, t) that are measured reflect the steady-
state values of inactivation at the holding potential. Although a more
complicated procedure is required for the most precise estimates of
B1 (V, oo), it is adequate for the present purposes to estimate this function
by plotting peak conductances as a function of holding potential, and
normalizing the largest values to one. This procedure yields the steady
state inactivation curve given in Fig. 2.
Once the inactivation time constants and steady-state values of in-

activation have been determined as described above, it is possible to
estimate A, (1V, oo) from the observed values of g, which result for a series
of clamps from a fixed holding potential to a variable clamping potential.
As long as activation occurs rapidly compared to inactivation, the follow-
ing equation holds for the decaying phase of the conductance curves.

gI (V, t) = 31AI (V, oo) B. (V, t). (3)

Since B1 (V, t) is known, the decaying phase of g, (V, t) may be extra-
polated back to time zero (the time membrane potential was stepped from
its holding value to the clamped potential), and the quantity gI A3 (V, oo)
may be found. The maximum value of this quantity is taken to be gl, and
A3 (1V, oo) is thus determined. Avalue of21 ,umhoswas the g- for the exemplar
cell, and the steady-state values of activation AI (V, co) are shown in
Fig. 2.
The rising phase of gI is generally too seriously contaminated with the

capacity transient current to permit a meaningful determination of the
activation time constant TAI. Thus, the value for the activation time
constant required at each clamping voltage to produce the observed time
of peak conductance was determined. These estimates of TAI (1V) are given
in Fig. 1.

Description of qA
Determination of the equilibrium potential for IA has been described in

the preceding paper. Value for the exemplar cell is -63 mV, and other
experiments have yielded values between -55 and -68 mV.
The description of YA (V, t) is obtained by first considering the voltage

range where this conductance alone is active, and later extending the
description to more depolarized values where it is necessary to separate
the effects of gA and gU. For potentials more negative than -35 mV, then,
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YA (V, t) is found by subtracting the leakage currents from the total
currents and dividing by the difference between membrane potential and
the equilibrium potential, VA. The following equation was found to
describe gYA

YA (V, t) = YA AA (V, t) BA (V, t), (4)

0*5

-40 -20 0 +20
mV

Fig. 2. Ordinate: inactivation, B1 (V,oo), (open circles) and activation,
A' (V, cc), (filled circles) characteristics for inward conductance plotted
against membrane potential (abscissa). Each set has been normalized to its
maximum value on the voltage range studied. Note that curves overlap
between -30 and -20 mV.

where gA is the peak conductance, AA is the activation term, and BA is
the inactivation term. The activation and inactivation terms are described
by the first-order differential equations

'TAA (V) dt +AA (V, t) = AA (V, co),

____(V, t)TBA (V) dt +BA (V, t) = BA (V, co),
where TAA is the time constant for activation, and AA (V, Xo) is the steady-
state value; similarly, TBA is the inactivation time constant, and BA (V, oo)
is the steady-state value of inactivation. As before then, two time con-
stants, and steady-state values for activation and inactivation must be
determined from the experimental data.
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Appropriate manipulation of eqns. (4) and (5) reveals that the activation
and inactivation time constants were estimated in the previous analysis of
the currents IA (Connor & Stevens, 1971b); these time constants appear
in eqn. (1) of that paper. For the exemplar cell TAA = 12 msec and
TBA = 235 msec. Unlike the activation and inactivation time constants
for other processes, TAA and TBA do not appear to depend upon membrane
potential.
The steady-state values for inactivation of this process may be deter-

mined by measuring the peak value of gA that results when the membrane
is clamped from various holding potentials to a fixed clamping potential.

A 12 B

106 10

0.8 8
0

O.6 6.
0.4 4

0.2 2

.-80 -60 -40 -60 -40 -20
mV mV

Fig. 3. A. Ordinate: normalized inactivation characteristics of gAl BA (V, cc).
Abscissa: membrane potential. B. Ordinate: activation characteristics of
gAK YAAA (V, oc). Abscissa: membrane potential.

This determination yields BA (V, co) up to a multiplicative constant, and
by taking the maximum value of gA as unity, the inactivation curve may
be normalized to values between one and zero, The steady-state inactiva-
tion BA (V, o) for the exemplar cell is shown in Fig. 3A. The curves
obtained from other cells are, within the range of experimental error,
essentially the same.
To determine the activation curve for YA, the following procedure was

used: membrane voltage was held at a given hyperpolarized value, -88 mV
in the exemplar cell; voltage was then stepped to a less negative value and
the resulting transient current measured. This was repeated for a family of
clamping voltages ranging from -60 to -30 mV. After correcting total
current for leakage current, the conductance qA (V, t) was computed. The
equation
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holds for time greater than 50 msec with an error of less than 5 %. The
activation term is then found by extrapolating the plot of gA (V, t) back
to time zero. The value of the intercept divided by the previously deter-
mined value of BA (V, o) at the holding potential used gives an estimate
of 9A A4 (V, o). It has proved impractical to separate gA and AA and
consequently, in Fig. 3B, the steady-state values of gAA4 (V, oo) are
plotted as a function of voltage for the exemplar cell. Other preparations
yield essentially similar plots.
For clamping voltages more positive than -30 mV, the 'K and IA

currents were separated by the subtraction procedure described in the
preceding paper (see Connor & Stevens, 1971 b; Fig. 12). The IA currents
thus obtained are used to extend the steady-state activation curve to
more polarized values as shown in Fig. 3B. For membrane potentials
more positive than those shown in Fig. 3B, the IK currents develop more
rapidly and become very large, and consequently the separation of the two
processes becomes inaccurate. As is apparent from Fig. 3B, the A-process
activation has not yet reached asymptote for the most positive membrane
potentials for which measurements can be accurately made; it is for this
reason that 9A and AA (V, cx) are not estimated separately.

Description of gE
The equilibrium potential for 1K determined by methods (2) and (3) was

-60 mV for the exemplar cell. Because gA is inactivated for membrane
potentials more positive than -40 mV, by holding the cell at this potential
value and clamping to more depolarized levels, it was possible to obtain
currents uncontaminated by 'A. Furthermore, because the I, transients
are so much more rapid than the 'K currents for voltages above -20 mV,
the inward currents can usually be eliminated by ignoring the shorter
times. In most cases then, gS could be estimated by merely subtracting
the leakage current from the total currents (ignoring the time during
which inward currents were flowing), and dividing by the difference
between membrane potential and equilibrium potential. In that voltage
range where steady-state inward currents flow (see Fig. 2), it was, of
course, necessary to subtract the steady inward current from the total
current in order to separate In.
Because our main concern has been with predicting the voltage trajec-

toryduring the interspike interval, in many instances we used the follow-
ing procedure to study SE: (1) the membrane was clamped to a holding
potential, (2) the clamp was released and a spike was initiated, and (3) the
clamp was re-instituted at a clamping potential during the downswing of
the spike. In this situation the decay of potassium conductance after a
normal spike could be investigated. If the prespike membrane potential
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was held at -40 mV or above, only leakage current and IK flowed during
the post-spike period because gA was inactivated. For prespike holding
voltages more negative than -40 mV, 9A became a factor and an appro-
priate correction for the presence of IA would have to be made. The con-
ductance gK after a spike was then determined by dividing IK by the
difference between the post-spike clamping potential and VK.
A Hodgkin-Huxley-like description of qE was attempted, but the third-

or fourth-power dependence Of YK on a process satisfying a first-order
differential equation was found not sufficiently accurate. The following
equations were, however, found to be adequate:

qE (V, t) = YEKAE (V, t)B(V,t), (6)

TAK(V) dA (V t)+AK (Vt ) = AK (Va 002dt

TBK(V) dtB(V' +BK (V, t) = BK (V, cc). (7)

As before, the time constants rAK and TBK, and the steady-state values
gE A4 (V, co) and BK (V, oo) must be found. It must be emphasized that,
although these equations have been written in a form like that used in the
preceding descriptions of g, and 9A, BK has a somewhat different signifi-
cance. Because the time constant of potassium inactivation was long
compared to the times of interest, potassium inactivation is not included
in eqns. (6) and (7), and so BK is not, as in the preceding equations, an
inactivation term. Rather, BK is a second component of activation and
the steady-state values of AK and BK both increase toward one as the
membrane is depolarized from the resting potential (- 40 mV).
During an action potential gK increases to quite large values, and,

by clamping the membrane potential to some specified level immediately
after an action potential, the return of gE toward its steady-state values
may be studied. According to eqns. (6) and (7), gK after a spike should
have the form

qE (V, t) = 9E ([AO-A (V, o)] exp (-t/TAK)
+A (V, cc))2 ([Bo-B (V, cc)] exp (-t/TBK) + B(V, c))

AO and Bo are the values of these parameters which obtain immediately
after the spike. For membrane potentials more negative than about
-30 mV, AK (V, o) is found to be near zero, and the decay of potassium
conductance following an action potential has the form

UK (V, t) = g_ A2 exp (-2t/TAK)
x ([BO-BK (V, oo)] exp (-t/TBK)+BK (V,. )) (8)
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This equation is the sum of two exponential, and, because the time con-
stants TAK and TBK are sufficiently different it is not difficult to separate
g, into the sum of two components when the conductance or current is

0
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TBK

_,0

-40 -20
mv

- 300

*200

E

.100

0
I I

+20

Fig. 4. Abscissa: time constants for outward conductance, g9K plotted against,
membrane potential (ordinate). Open circles were derived from post-spike
clamp data (see text).
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Fig. 5. YKAK (V, c), in mhoss, and BK (V, oc), unitless, plotted as a function
of membrane potential. Filled squares were derived from post-spike clamp
data. As the form ofBK (V, oc) and OKA' (V, mc) are the same for membrane
potentials more positive than 0 mV, BK (V, oo) has been normalized in such
a way as to make the two functions numerically equal in this voltage range.
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plotted on a semi-logarithmic scale as a function of time. The values of
TAK and TBK obtained in this way are shown in Fig. 4 (open circles). By
extrapolating the separated components AK (V, t) and BK (V, t) back to
zero time (point at which post-spike clamp was instituted), one finds, up
to an arbitrary multiplicative constant, BK (V, oo); these values are shown
in Fig. 5.
By considering the conductances over a wider range of voltages, it is

possible to extend the preceding analysis to give the time constants and
steady-state values shown in Figs. 4 and 5. Fig. 6 presents gK variations

0

/~~~~~0205 mho

,{ ~~~~~50msec

Fig. 6. Continuous traces: activation of gK associated with membrane
voltage steps from -40 to -10 mV (upper trace) and from -40 to
-18 mV (lower trace). Squares: fit achieved by two time constant approxi-
mation described in text. Circles: fit achieved by fourth power of simple
exponential (Hodgkin-Huxley approximation). The initial part of the
curves is contaminated by inward current and is not considered in these
two cases.

produced by a depolarizing clamp, and gives the predicted values from
eqns. (6) and (7), and the parameters in Figs. 4 and 5. It is apparent that
the fit is adequate but not perfect. In Fig. 7A a family of clamping currents
following action potentials is shown, and with it, the predicted values from
eqns. (6) and (7). For comparison, the conductances predicted by equations
of the same form used by Hodgkin & Huxley for their potassium con-
ductances are shown in Figs. 6 and 7B.
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50
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I
100 200 300 100 200 300

msec msec
Fig. 7. A. Continuous curves: transient part of currents (total current minus
steady-state current) associated with post-spike clamping voltages of
-29 mV (top curve), -34-5 mV (middle curve), and -38 mV (bottom
curve). Symbols show fit achieved by the two time constant model de-
scribed in text. B. Same currents as in part A. Symbols show fit achieved
by fourth power of simple exponential.

SECTION 2
The complete set of descriptive equations is summarized in (9).

dV 4
I (t) = C- + E -jAX (V, t) Bj (VI t) (V

TA, ( V) dAj (V, t) +Aj (v, t) = Aj (V, x),

TBj (V) djt ' )+Bj (V, t) = Bj (V, oc).

(9)

The values for the various parameters are specified in Table 1 for the
exemplar cell.

If the analysis embodied in equations grouped as (9) is correct, the
solution to these equations should successfully predict membrane potential
for any applied current. Approximate solutions to (9) for a number of
stimulus conditions have been obtained, and in general they do yield
accurate predictions; the extent of agreement between observed and pre-
dicted membrane potential, and the deficiencies in these predictions will
now be described.
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If eqns. (9) are solved for applied current equal to zero, the observed
resting potential of -40 mV is accurately predicted. Solutions for a wide
range of depolarizing currents yield infinite trains of spikes at a frequency
which depends upon stimulus intensity. For at least a sevenfold range of
stimulus intensities, reciprocal interspike interval, that is, impulse
frequency, is linearly related to applied current, and for larger stimu-
lating currents, saturation occurs so that frequency increases less rapidly
with further increments in stimulus intensity. The predicted curve for
impulse frequency as a function of stimulating current intensity is given
in Fig. 8 (filled circles), and in the same Figure the observed values for the

TABLE 1. Parameters of eqns. (9) for the exemplar cell. Straight-line approximations
in cited figures were used in computations. C = 14 pF

Letter
designa-

j tion Tp(V) jBj (V) f Aj (V, cc) Bj (V, oo)

1 L 0 0 0 049 #mho 1 -40 mV
2 K Fig. 4 Fig. 4 Fig. 5 Fig. 5 -60 mV
3 I Fig. 1 Fig. 1 21 gmho Fig. 2 +45 mV

times values
in Fig. 2

4 A 12 msec 235 msec Fig. 3 Fig. 3 -63 mV

reciprocal of the exemplar cell's first interspike interval are plotted. When
these predictions were carried out, a slight error was present in the steady-
state Al (V, co) curve (see Fig. 2), so that inward current increased too
rapidly with depolarizations and caused the predicted action potentials to
occur slightly too early; this error in estimating the inward current mechan-
ism accounts for the fact that all of the predicted frequencies are slightly
too large, but the error was not large enough to require the calculations to
be repeated with the more accurate value for A, (V, as). It is apparent that
the observed and predicted frequencies agree quite well not only in the
linear region, but also for higher stimulus intensities where saturation is
occurring.
For a step of depolarizing currents, eqns. (9) predict that the membrane

potential rises approximately linearly to about -25 mV, and then curves
sharply up into an action potential whose peak reaches +25 mV and
whose duration is about 25 msec. After the action potential there is a
hyperpolarization and then an approximately linear rise again to a second
spike. Observed and predicted membrane potentials are shown in Fig. 9A
and B (on a slower time base). Although the observed and predicted
curves in Fig. 9A are quite close, the depolarization in the predicted curve
develops more slowly and the predicted spike occurs later. These differ-

45



J. A. CONNOR AND C. F. STEVENS
ences are within the range of experimental error (small changes in stimulus
intensity and membrane capacitance would bring the observed and pre-
dicted curves into closer agreement) but we feel the disagreement is in fact
primarily the result of inaccuracies in the inward current mechanism
description; these will be discussed later. On the slower time base of
Fig. 9B, the observed and predicted membrane potential trajectories are
again in quite close agreement. The downswing of the predicted action
potential is not quite rapid enough, a deficiency we attribute to insufficient
activation of gK.
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2

2 4 6 8
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Fig. 8. Firing frequency (ordinate) plotted against transmembrane stimulus
current (abscissa) for exemplar cell (open circles) and model (filled circles).

To the extent that our analysis is indeed accurate, it is now possible to
understand the role each conductance plays in determining membrane
potential during repetitive firing. When current is first applied, the mem-
brane starts to depolarize, but as it does so gA is activated and an outward
potassium current flows which opposes the applied current, thus slowing
the rate of depolarization. The interaction of the YA activation and the
charging of the membrane capacitance by the applied currents causes
membrane potential to increase approximately linearly to the voltage
where gI becomes more rapidly activated. As current flows through gI,
the cell becomes rapidly depolarized and the spikes ensue. During the
upswing of the spike the inward current channels become inactivated and
the potassium channels become activated, until at the peak of the spike
the potassium and inward current are equal. After this point, the potassium
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current exceeds the inward current, which is now almost completely inacti-
vated, and the membrane potential is rapidly returned toward the resting
potential. The large potassium conductance resulting from the spike
hyperpolarizes the cell and dominates behaviour during the first part of
the interspike interval. As gK decreases toward its resting value, the mem-
brane starts depolarizing under the influence of the applied currents.
However, the gA channels have lost some of their inactivation during the
period of hyperpolarization, and as the membrane depolarizes these

A 202 mV

llo-* 2~~~~0 mV *

C
1.0

: 05e

Fig. 9. A. Comparison of an action potential recorded from the exemplar
cell and a computed action potential. Computed A.P. indicated by (*).
B. Computed (*) and recorded action potentials at compressed time scale
for comparison of membrane voltage behaviour between A.P.S. Stimulus
current, 1-6 nA. C. Computed membrane currents associated with the
computed voltage behaviour of part B. Currents flowing during the action
potentials are not shown because their large magnitude would obscure
subthreshold behaviour.
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channels are activated, and slow the rate of depolarization by opposing
the applied current with a potassium current. Toward the end of the
interval the inward current mechanism is slowly activated, so that, finally,
a balance of inward and outward currents is achieved through the gI and
gA. channels, and a linear rise in membrane potential results. At a sufficient
depolarization, the inward current mechanism dominates and another
spike ensues. This sequence of events is illustrated in Fig. 9C.
Because the conductance YA is not present in the more thoroughly

analysed squid axon and frog node, it is of interest to consider situations
which make the action of this mechanism most prominent. At -40 mV,
qA is largely inactivated (see Fig. 3), so a prolonged hyperpolarizing pulse
should remove this inactivation and place the membrane in a state where,
on depolarization, the effects ofYA would be most strongly felt. In Fig. IOA,
the membrane potential recorded from a second neurone on which analysis
was performed is shown. The cell was subjected to a 500 msec hyper-
polarizing current (Fig. 10C) followed by a depolarizing current. When the
depolarizing stimulus is applied the membrane potential rises rapidly,
overshoots, and then proceeds smoothly toward the takeoff of the action
potential. This behaviour is the consequence of removal of inactivation
from 9A by the hyperpolarization, followed by the activation and in-
activation of qA. The open circles in Fig. 10A show the predicted response
up to the spike take-off and indicate satisfactory agreement between
observed and predicted membrane potentials. Thus, the behaviour of the
membrane after a prolonged hyperpolarization is dominated by the pro-
perties of 9A. Two other effects of 9A, not illustrated in the Figure, are the
following: first, with a pre-spike membrane potential more negative than
about -50 mV, the membrane potential rises very slowly to the point
where the first action potential is initiated. This effect is the result of
large IA currents which develop because of relatively small initial inactiva-
tion at the resting potential. This current cancels applied current, and in
effect makes even large stimulus intensities result in only slowly increas-
ing depolarizations. This situation is the normal one for most unligated
cells. Because the exemplar cell soma was isolated and had a resting
potential of only -40 mV, the effect could be achieved only by pre-
hyperpolarization. A second effect, seen in many preparations, is that the
first interspike interval of a train following a hyperpolarization is longer
than would ordinarily be observed. This abnormally long first interval
results because the gA inactivation has not, by the time an action potential
has occurred, developed to its steady-state level, and so the effect Of 9A
is more prominent than normal during the first interspike interval. Thus,
the IA currents retard the rate of interspike depolarization and prolong
the interval. This effect can persist over several intervals if the firing
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frequency is high enough to permit several spikes to fire before BA has
reached a steady-state level. The effects just described are adequately
predicted by eqns. (9).

A

15 mV

250 msec

02Sjsmho
B gA

IgL

* 10lInA

Fig. 10. A. Recorded membrane voltage (continuous line) and computed
response (circles) to the current stimulus shown in part C. B. Computed
behaviour of gA associated with voltage changes of part A. Leakage con-
ductance, gL, is indicated by dashed line. gi and g. are negligible for
voltages in the range shown. VL = -42 mV. P/A = -63 mV.

The preceding description of the mechanisms controlling membrane
potential during the interspike interval holds for the range of frequencies
into the saturation region. For very high frequencies, however, the cell
membrane fails to repolarize to sufficiently negative values after a spike
for YA to lose its inactivation. In these cases, YA plays no role in repetitive
firing, and membrane potential is determined solely by the other con-
ductances.
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DISCUSSION

The properties of g, are difficult to measure with accuracy because
separation of I, and IK is difficult, and because the activation of g1 is too
rapid to be well resolved with the voltage clamping system employed in
these experiments. Nevertheless, the analysis of g, is sufficiently accurate
to yield relatively good predictions for the action potential as seen in
Fig. 9A. The most serious difficulty with the description of the inward
current mechanism appears to involve the inactivation term BI (V, t). The
second and succeeding computed spikes in long trains are approximately
5 mV smaller than the first spike, an occurrence seldom seen in prepara-
tions. Furthermore, a long, maintained depolarization before the first spike
also can give rise to a predicted action potential which is smaller than that
observed in the preparation. Although the effect has not been analysed,
in several experiments there has appeared what must be an inactivation
process affecting gI with a time constant on the order of 400 msec. The
steady-state inactivation curve used for the computations (Fig. 2A) was
obtained in a manner which would include both the rapid and the slower
types of inactivation. Thus inactivation, which should partly develop with
a slow time course, reaches its steady-state rapidly in our equations, and
thus for slowly increasing depolarizations there is a tendency for the in-
activation to be larger than it should be. This effect must be analysed in
greater detail before completely satisfactory predictions of repetitive firing
can be made.
The analysis of gE is difficult primarily because the large currents which

flow with large depolarizations appear to cause potassium accumulation
in the Frankenhaeuser-Hodgkin space (Frankenhaeuser & Hodgkin, 1956),
and thus give a non-constant equilibrium potential for the process. Further-
more, cells seem to deteriorate rapidly when a series of very large de-
polarizations is used. It is, of course, difficult to analyse SK accurately
without the benefit of accurate data over a wide range of membrane
potentials. Thus, we have concentrated on obtaining a thorough descrip-
tion for the range of membrane potentials below -30 mV. Furthermore,
since our interest has been processes which are rapid compared to the
potassium inactivation, that factor has not been included in the equations.
For technical reasons, then, the analysis of gE has certain limitations.
Beyond this, however, the behaviour of these channels seems quite compli-
cated, and thus yields less readily to analysis than, for example, the con-
ductance, GA. We have departed from the Hodgkin-Huxley fourth power
analysis of gE because this description seemed not sufficiently accurate,
and furthermore, because certain qualitative observations point to the
existence of two separate processes (termed AK (V, t) and BK (V7, t)). The
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most striking of these is the behaviour of qE that is seen when a clamp is
instituted above -20 mV after a spike has been elicited (see Connor &
Stevens, 1971 a; Fig. 9). In this case, the currents decreased and then after
a dip increased to their steady level. Such behaviour cannot be exhibited
by the traditional g. description, but is readily modelled by the two
separate processes as done here. The physical meaning of these processes
remains obscure, and we cannot even be confident that this behaviour
is not the result of two separate mechanisms, a traditional gK, and a
chloride conductance, for example. A second deficiency in the description
of repetitive firing given here, then, is the incomplete analysis of the g]
mechanism.
The model presented gives, except under special circumstances de-

scribed below, infinite trains of action potentials with a constant inter-
spike interval; that is, the first and each succeeding interval are all of the
same length. The preparation, on the other hand, almost always shows a
lengthening of interspike interval as the train proceeds. Thus, the model
predicts a constant impulse frequency to a steep stimulation, whereas the
actual preparation shows a frequency which decreases somewhat when
step stimulation is employed. The predictions in the paper were compared
with the first interspike interval and are reasonably accurate. For sub-
sequent intervals, the model predicts a firing rate which is too high. This
phenomenon has not yet been analysed in detail but some preliminary
experiments, in which a clamp was instituted following a train of spikes,
have indicated that, associated with such a train, there is an increase in
potassium conductance which decays with a time course much slower than
any described for gE in the paper. Such a long time constant potassium
mechanism could, of course, account for the adaptation exhibited by the
preparation but absent in our description of repetitive firing. Such a con-
clusion must, however, await further experimental data.
The preliminary evidence just mentioned suggests the existence of a

slow potassium system in the preparation, and thus, the description given
here is inaccurate to the extent that such a conductance is important in
repetitive firing. Two other phenomena are also present in these neurones,
neither is included in the preceding description, and for neither has the
role in repetitive discharge been adequately evaluated. Potassium in-
activation is certainly present (Connor & Stevens, 1971 a), and in fact, can
be quite marked. This was not included in the model, and the functional
significance of this process remains obscure. Although the electrogenic
sodium pump (Connelly, 1959; Nakajima & Takahashi, 1966; Carpenter &
Alving, 1968; Thomas, 1969) present in these cells does not fit into the
framework of the present analysis in terms of conductances, this pheno-
menon should affect the cell's behaviour in that pumping rate might
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increase with cellular activity. The magnitude of this effect must be evalu-
ated experimentally, and because our experiments were typically done at
low temperatures where electrogenic sodium pump activity is depressed,
we have no information on its role in the phenomenon of repetitive firing.
The conductance termed 9A has been seen to dominate the behaviour of

the cell in certain circumstances. It is of interest to know if the presence of
such a mechanism can be detected in other neurones without the necessity
of carrying out voltage clamp experiments. Two phenomena which depend
on qA, both present in the observed and predicted behaviour of these
neurones, can serve as tests for the presence of 9A. If a neurone is hyper-
polarized and then depolarized, the characteristic overshooting behaviour
illustrated in Fig. 9 results from .A, and offers the possibility of detecting
the presence of this mechanism when only current clamp is available.
Secondly, if a depolarizing stimulus is preceded by a long-lasting and large
hyperpolarizing stimulus, the first interspike interval is longer than it
would have been had the depolarizing stimulus been employed without
prior hyperpolarization. This effect too should reveal the presence of YA*
It must be emphasized, however, that both of these effects depend on the
time constants of gq relative to the membrane time constant and to the
period between the spikes. Thus, to detect gA by the presence of a longer
first interspike interval, it is required that the interspike interval be com-
parable to the time constant for gA inactivation; higher stimulus intensi-
ties then yield a more sensitive test than do low stimulus intensities which
give long interspike intervals. It will be interesting to see if other neurones,
particularly those in the central nervous system, share this property with
the molluscan neurones we have studied.
Although the analysis we have presented here is not complete in all

respects, we feel that the satisfactory agreement between predicted and
observed neuronal behaviour indicates that the primary processes under-
lying the phenomenon of repetitive firing have been revealed, and that we
have given an essentially correct description of the control of membrane
potential during the interspike interval in the preparation studied. We
hope that this work will serve as a useful foundation for further investiga-
tions of repetitive discharge in the isolated neurone soma, and for an ana-
lysis of this phenomenon in the vertebrate central nervous system.

We wish to thank Professor Theodore Kehl for making available to us the com-
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USPHS Grants NB 06934, NB 05082 and FR 00374.

52



FIRING AND VOLTAGE CLAMP DATA 53

REFERENCES

CARPENTER, D. 0. & ALVING, B. (1968). A contribution of an electrogenic Na+ pump
to membrane potential in Aplysia neurons. J. yen. Physiol. 52, 1-21.

CONNELLY, C. M. (1959). Recovery processes and metabolism of nerve. Rev. mod.
Phys. 31, 475-484.

CONNOR, J. A. & STEVENS, C. F. (1971 a). Inward and delayed outward membrane
currents in isolated neural somata under voltage clamp. J. Physiol. 213, 1-19.

CONNOR, J. A. & STEVENS, C. F. (1971 b). Voltage clamp studies of a transient
outward membrane current in gastropod neural somata. J. Physiol. 213, 21-30.

DODGE, F. A. & FRANKENHAEUSER, B. (1959). Sodium currents in the myelinated
nerve fibre of Xenopus laevis investigated with the voltage clamp technique.
J. Physiol. 148, 188-200.

FRANKENHAEUSER, B. & HODGKIN, A. L. (1956). The after-effects of impulses in
the giant nerve fibres of Loligo. J. Physiol. 131, 341-376.

FRANKENHAEUSER, B. & HUXLEY, A. F. (1964). The action potential in the myelin-
ated nerve fibre of Xenopuw laevis as computed on the basis of voltage clamp data.
J. Physiol. 171, 302-315.

HODGKIN, A. L. & HUXLEY, A. F. (1952). A quantitative description of membrane
current and its application to conduction and excitation in nerve. J. Physiol. 117,
500-544.

NAKAJIMA, S. & TAKAHASHI, K. (1966). Post-tetanic hyperpolarization and electro-
genic Na pump in stretch receptor neurone of crayfish. J. Physiol. 187, 105-127.

NOBLE, D. & TSIEN, R. W. (1969a). Outward membrane currents activated in the
plateau range of potentials in cardiac Purkinje fibres. J. Physiol. 200, 205-231.

NOBLE, D. & TSIEN, R. W. (1969b). Reconstruction of the repolarization process in
cardiac Purkinje fibres based on voltage clamp measurements of membrane
currents. J. Physiol. 200, 233-254.

OCHS, A. L. (1967). Changes in membrane properties with hyperpolarization in snail
neurons. Am. J. Physiol. 231, 16-20.

THOMAS, R. C. (1969). Membrane current and intracellular sodium changes in a
snail neurone during extrusion of injected sodium. J. Physiol. 201, 495-514.


