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The scientific mission of the Project MindScope is to understand
neocortex, the part of the mammalian brain that gives rise to
perception, memory, intelligence, and consciousness. We seek to
quantitatively evaluate the hypothesis that neocortex is a relatively
homogeneous tissue, with smaller functional modules that perform a
common computational function replicated across regions. We here
focus on the mouse as a mammalian model organism with genetics,
physiology, and behavior that can be readily studied and manipulated
in the laboratory.We seek to describe the operation of cortical circuitry
at the computational level by comprehensively cataloging and
characterizing its cellular building blocks along with their dynamics
and their cell type-specific connectivities. The project is also building
large-scale experimental platforms (i.e., brain observatories) to record
the activity of large populations of cortical neurons in behaving mice
subject to visual stimuli. A primary goal is to understand the series of
operations from visual input in the retina to behavior by observing
and modeling the physical transformations of signals in the cortico-
thalamic system. We here focus on the contribution that computer
modeling and theory make to this long-term effort.
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The neocortical sheet is a layered structure with a thickness that
varies by a factor of two to three, whereas its surface area varies

by 50,000 between the small smoky shrew and the massive blue
whale. A unique hallmark of mammals, neocortex is a highly ver-
satile, scalable, ∼2D computational tissue that excels at real time
sensory processing across modalities and making and storing asso-
ciations as well as planning and producing complex motor patterns.
Neocortex consists of smaller modular units (columnar circuits that
reach across the depth of cortex) broadly repeated iteratively across
the cortical sheet. These modules vary considerably in their con-
nectivity and properties between regions, with some controversy
whether there is, indeed, a single canonical function performed by
any and all neocortical columns.
A deep understanding of cortex necessitates measuring

relevant biophysical variables, such as recording action and
membrane potentials, and relating them to genetically identi-
fied cell types. Mapping, observing, and intervening in wide-
spread but highly specific cellular activity are more readily
accomplished in the mouse, Mus musculus, than in the human
brain. The brain of the laboratory mouse is more than three
orders of magnitude smaller than the human brain in weight
(0.4 vs. 1,350 g) and contains 71 million vs. 86 billion nerve cells
for the entire brain and 14 million vs. 16 billion nerve cells for
neocortex (1).
The Allen Institute for Brain Science is engaged in a 10-y, high-

throughput, milestone-driven effort to characterize all cortical cell
types for the mouse cortex to build a small number of distinct
experimental and computational platforms, called brain observa-
tories, for studying behaving mice and to construct abstract and
biophysically realistic models of cortical networks. All relevant
data, including anatomical, physiological, transcriptional, behav-
ioral, and modeling data, acquired are made freely and publicly
available at www.brain-map.org.

Some theoretical questions that we seek to address are

Canonical cortical computation: To what extent are the compu-
tational principles found in mouse primary visual cortex (V1)
common to other visual areas, other sensory areas, and other
cortical areas? What is the common computational motif, the
canonical circuit, that recurs with variants throughout neocortex?

Hierarchical computations: Do visual regions correspond to
layers of a primarily feedforward hierarchical computation, in
which each layer integrates features represented at previous
layers, as a mechanism for object recognition? What is the
function of top-down signals in cortex? Is neural computation
best viewed as statistical inference?

Neural population dynamics: How do the dynamics of neural
populations reflect computations of visual representations, de-
cisions, and motor planning that evolve over the time course of
a behavioral trial? Are there repeatable trajectories in the space
of multineuron activity that lead to different decisions made by
the brain? What mechanistic neural models can give rise to the
observed dynamics? Can their complexity be captured by low-
dimensional models?

Visual coding: How do visual thalamocortical areas represent
information about the world? How is this representation affected
by internal states, in particular vigilance? Is the representation of
natural scenes efficient as in sparse coding models? Does this
neural code use the correlation structure among neurons as in
population coding? How does population dynamics change dur-
ing learning a visual object recognition task?

We here describe recent progress in how modeling and theory
contribute to understanding the operations of the cortical sheet.

Visual System of the Mouse
The goal of MindScope is to understand the computations per-
formed by visual cortex in the young adult laboratory mouse. We
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chose the visual system (Fig. 1) not because mouse vision is a good
model system for human vision, but because the visual modality is
the one best understood in terms of anatomy, physiology, psy-
chophysics, and computational models.
In the common laboratory mouse (56-d-old male C57BL/6J), 6–7

million rods and 180,000 cones in each eye convert the incoming
rain of photons into analog information that percolates through the
retinal tissue and generates action potentials in 55,000 ganglion
cells (2). There are at least 20 types of distinct ganglion cells, each
one with distinct morphologies, response patterns, target cells, and
molecular signatures. Each of these cell types tiles (that is, covers)
visual space. Most of them project to the superior colliculus and
close to two dozen other target structures. At least four of these cell
types project to 18,000 neurons of the lateral geniculate nucleus
(LGN), part of the visual thalamus (Fig. 1B). The axons of LGN
cells, in turn, connect with some of 360,000 neurons of the V1 (Fig.
1C). Fig. 1D shows a dendritic reconstruction of a somatostatin
(Sst) gene expressing V1 interneuron, with its axon in blue and its
dendrites in red. The thalamocortical visual system consists of
pathways from the retina through LGN to the V1 (Fig. 1C) and
from there, to a wide network of other cortical regions (Fig. 1E).
Wide-field imaging of cortical firing patterns through a 5-mm-
diameter cranial window (perimeter marked with a dashed line in
Fig. 1F) reveals at least 10 functionally active visual cortical areas
(Fig. 1F). Finally, the cortical sheet exhibits layered structure, with
five layers (labeled 1, 2/3, 4, 5, and 6) distinguishable and each layer
hosting many different excitatory and inhibitory cell types. We have
identified 42 distinct cell types in V1 alone using single-cell mRNA
transcriptional clustering: 19 excitatory and 23 inhibitory neurons
(3, 4) (casestudies.brain-map.org/celltax).

Models of Individual Neurons
A significant effort of MindScope is the characterization of com-
ponents that comprise the cortex—synapses, neurons, and standard
circuits that they form. To that purpose, we have set up a stan-
dardized pipeline characterizing electrical properties and mor-
phology of individual neurons from brain slices coupled with the
generation of point neuron and biophysical models of these cells.
Computational models are tuned to reproduce experimentally

recorded electrical data. Models for neurons from genetically la-
beled subpopulations in mouse V1 were generated, including both
inhibitory and excitatory cells from different layers, displaying a
range of intrinsic electrophysiological properties (Fig. 2). The
ability of models to reproduce the spike times of experimental
data is evaluated by a temporal explained variance metric. All
models and evaluation criteria are freely shared through the Allen
Cell Type Database (celltypes.brain-map.org/).

Point Neuron Models. Generating models at different levels of
granularity is important because of the multiscale nature of neu-
ronal systems (5). We constructed a series of point neuron models
of increasing complexity aimed at reproducing the temporal
properties of spike trains (as opposed to subthreshold properties).
Point neuron models take a somacentric view, in which the fun-
damental variable is the membrane potential at the soma, ignoring
detailed dendritic morphology. The neuronal membrane potential
has two different timescales: one characterizes the rapid changes
during the action potentials, and the other characterizes slower
subthreshold changes. This timescale separation, along with the
highly stereotyped shape of action potentials, is the fundamental
reason for the generation of hybrid dynamical systems. In these
systems, a set of dynamical equations is followed until a condition is
reached, at which point the values of the state variable(s) are reset.
The leaky integrate and fire (LIF) model (6) is the best known
example of a simple hybrid system where the membrane potential
evolves until a threshold is reached, after which it is reset. Gen-
eralizations of LIF models that aim to better characterize neural
spiking behavior include increasing the number of variables in the
dynamical equations, thereby making the dynamical equations
nonlinear (7), and making the reset rules more sophisticated (8).

To access the contribution of each mechanism to spike time
reproduction, we constructed a series of increasingly complex
models starting with the basic LIF model. We sequentially included
(i) reset rules (spike-dependent changes in membrane potential
and threshold caused by the activation and inactivation of ionic
membrane conductance), (ii) after-spike currents (representing the
slower effects of membrane conductance activated by an action
potential), and (iii) voltage-dependent changes in threshold. To fit
the parameters for the different mechanisms, we designed a series
of stimuli specifically aimed at characterizing them, in which more
complex models required more specific stimuli. For more complex
models, the fitting of the mechanisms is iterative (similar to that in
the work in ref. 9) followed by a final optimization step (similar to
that in the work in ref. 10) to fine-tune parameters. The perfor-
mance of the models was evaluated by time-based metrics on
frozen noise not used for the generation of the models (Fig. 2).
These models provide a baseline for reproducing neuronal firing
patterns and can readily be used for large network simulations.
By keeping the number of added mechanisms low, these gen-

eralized leaky integrate and fire (GLIF) models represent a low-
dimensional description of the true membrane dynamics. The
challenge for this class of models is to prove that a low number of
mechanisms can reproduce the salient features of activity. To test
if the GLIF model is sufficient to reproduce spiking behavior for
in vivo-like stimuli, we quantify the fraction of the variance of the
biological spike train that can be explained by the model.

Biophysical Neuron Models. A finer level of resolution is furnished
by biophysical models, which aim to create a faithful and detailed
representation of how visual information is processed in cortex
with a direct link between the biological substrate—synapses, cell
membranes, various neuronal compartments, and their biophysical
properties—and the computations performed through their con-
certed activity. The aim of single-neuron biophysical models is to
more precisely reproduce the general firing and subthreshold dy-
namics of neurons recorded under both slice conditions as well as
in the behaving animal. The models use the approach in the work
by Druckmann et al. (11) to evaluate performance by comparing
the model and experimental values of specific electrophysiological
features (average firing frequency, action potential width, etc.)
computed, in its simplest form, from the somatic voltage response
to somatic current injection in the slice.
Models are optimized and run using NEURON 7.3 (12). Passive

parameters (intracellular resistivity and membrane capacitance)
are first estimated by fitting a model without active conductance
and then, fixed during the main optimization procedure, whereas
the densities of active somatic conductance are tuned to optimize
the response of the model to a step current. An additional mech-
anism describing intracellular Ca2+ dynamics has two free param-
eters that are optimized: the time constant of Ca2+ removal and the
binding ratio of the Ca2+ buffer. Other free parameters are the
densities of a leak conductance in each type of cellular compart-
ment: somatic, axonal, basal dendrite, and apical dendrite (when
present). In total, 15–16 free parameters are tuned to optimize
these models using a genetic algorithm procedure (11, 13). Several
random seeds are used, and the best model across all runs is kept
as the representative model for a given cell.
These biophysical models with passive dendrites, obtained for a

variety of excitatory and inhibitory neurons (Fig. 2), reproduce ex-
perimentally recorded responses to training stimuli and generalize
well to other stimuli.
One of the significant features of cortical neurons is active and

voltage- and ion-dependent conductance along their dendritic
morphologies. Such active conductance crucially impacts the
transformation of synaptic inputs along the cellular morphology.
For example, layer 5 pyramidal neurons in mouse V1 support a host
of nonlinear mechanisms, such as somatic Na spikes, Ca-dependent
plateau potentials, and NMDA spikes (14), hypothesized to offer
different ways to integrate synaptic inputs. We are using the
aforementioned optimization framework to account for spatial
profiles of such active dendritic conductance, a computationally
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demanding process, and collaborating with the Blue Brain Project
[Ecole Polytechnique Federale de Lausanne, (EPFL)] to implement
active dendritic conductance. These optimizations capture features
of back-propagating action potentials along dendrites as well as
dendritic Ca spikes elicited at the Ca hot zone close to the main
apical bifurcation of pyramids (similar to that in the work in ref. 14).
A key feature of the approach described above is that neuron

models are produced for individual cells that were experimen-
tally characterized rather than as an instantiation of a cell from a
cell “type” based on the statistics of features defining the type [as
done, for example, in the Blue Brain Project (15)]. Our approach
is more difficult, because it is more constrained by data for each
cell; however, it does not depend on any a priori cell taxonomy.
This strategy is important, because no commonly agreed on
taxonomy of cortical cell types has yet been created.

Systems-Level Models: Three Levels of Granularity
After characterization of the cellular building blocks, we next seek
to investigate the emergent activity and computations of cortical
networks related to retinal inputs. Building models at several levels
of granularity is necessary to comprehend the neural correlates of
visual perception and the computations performed by different
components. We use three levels of granularity.
For a coarse characterization of cortical dynamics, we exploit an

often used coding assumption that relevant variables are represented
in the firing rate of a population of neurons. Using a statistical

population density approach, one can then describe the dynamics of
multiple active populations directly rather than by representing in-
dividual neurons separately (16). This approach allows for easier
interpretation of the results and much faster simulation than with
more elaborate models. The same method can be used to describe
dynamics on mesoscopic scales, assuming that larger populations are
homogeneous. Each cell type is, thereby, described by its own firing
rate distribution.
In general, for inhomogeneous input or large and more complex

synaptic connectivities, point neuron simulations are more appro-
priate, and one may use them to refine the number of cell types in
determining cortical responses. This class of models treats each
neuron as an independent entity, although the biophysical morphology
of the neuron is ignored. Because these simulations have a larger
number of parameters, some of which remain unconstrained, we
focus on simulation efforts predicting responses of cell type-
specific optogenetic perturbations.
Systems-level models that use biophysically realistic neurons at-

tempt to show the effects of synapses, cell membranes, and various
neuronal compartments on the network-level activity. Although
these detailed simulations are computationally expensive and pose
significant challenges for optimizing all relevant parameters, they
enable a more direct understanding of biological properties and
model parameters and permit a direct comparison between in silico
and in vivo measurements.
Although currently, we perform independent simulations at

these different levels of resolution, the ultimate aim is to produce

Fig. 1. Mapping and analyzing cell type data. (A) A
coronal view of the mouse brain showing in situ hy-
bridization data from the Allen Brain Atlas for the Sst
gene, a genetic marker for one class of inhibitory in-
terneurons. (B) A view of the brain with the LGN and
V1 outlined in red. Inset shows individual V1 Sst cells.
(C) Overview of how right (red) and left (blue) visual
fields are mapped from the retinas onto the LGN (also
referred to as LGd) and from there, onto V1. Ganglion
cells target more than 20 other brain structures other
than the LGN. (D) A dendritic reconstruction of an Sst
V1 interneuron, with its axon in blue and its dendrites
in red. (E) V1 receives input from at least 40 distinct
anatomical structures (cortical regions are shown) and
projects to more than 34 regions (4). (ORB, orbital
cortex; MOs, motor cortex; ACA, anterior cerebral
artery; SSp, primary somatosensory cortex; TEA, teg-
mental area; AUDd, dorsal auditory stream; RSP, ret-
rosplenial cortex; and ENT, entorhinal cortex.) (F)
Functionally defined visual maps in the mouse visual
cortex. V1 is surrounded by other visual regions, such
as LM area, AL area, rostrolateral area (RL), ante-
romedial area (AM), PM area, and medial area (M).
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multiscale simulations where a region of interest (e.g., V1) is
modeled in biophysical detail, whereas closely associated regions
(e.g., the rest of the visual system) are modeled with point neurons,
and the rest of the brain is represented by population statistics.
Experimental data can parameterize neuronal simulations. How-

ever, even the most massive datasets leave the simulation under-
determined. More often, these data can provide strong validity
constraints on neuronal models based on simulation results. When
these constraining data are statistical in nature, fitting fine-scale
models can be difficult whenever the relevant minimization objective
function has stochastic terms. Because of their speed and de-
terministic dynamics, population statistic approaches can offer a
complimentary alternative; parameter values can be tuned to satisfy
validity constraints, and these tuned values can be substituted into
fine-grained models. This multiscale modeling approach, which
considers models at the scale best suited to data constraints, points to
a synergy of modeling approaches, each tuned to its relevant domain.

Modeling Thalamic Input. To characterize cellular responses in the
behaving animal, systems-level models of cortical circuits rely on
understanding the response properties of LGN neurons and their
influence on V1 responses. Such a characterization has been per-
formed under anesthesia (17), with six identified physiologically
distinct cell classes. We have constructed a database of response
characteristics and simplified filter-based models of these neurons
in the awake mouse under different behavioral states. We then
used simultaneous recordings obtained with high-density silicon
probes to record the electrical activity of neurons in LGN and V1.
Response properties were characterized using a variety of visual
stimuli, such as sparse noise, drifting/stationary gratings, etc.
Linear–nonlinear Poisson (LNP) models (18) were constructed to
predict the output of LGN and V1 cells to a visual stimulus.
Although in general, these models provide a poor fit to test data

on an individual trial basis (R2 = 0.02), a repetition of the stimulus
significantly improves the result to R2 = 0.51. Cascade models (19)
are a significant improvement: R2 = 0.5; however, they are difficult
to fit. We are using specially designed stimuli for these models:

locally sparse noise, which allows independent characterization of
subfields. A database of such models for LGN will allow systems-
level cortical models to be simulated on exact spike trains for the
images/movies that are used in the experimental training recordings.

Population Responses of a Cortical Column. Population density model-
ing (20–22) offers an approach that is especially useful for systems
composed of homogenous neuronal populations. Instead of simu-
lating the dynamics of each neuron individually, a density distribu-
tion for the state variable evolves according to a master equation
derived from the dynamics of the individual components. This ap-
proach significantly decreases computational resources necessary to
simulate the system dynamics at the cost of averaging over hetero-
geneities in the populations. When summary statistics rather than
single-neuron responses are external observables of interest, this
tradeoff might tip in favor of a coarser-scale approach.When the true
internal representation of the system is statistical (i.e., a population
rate code), nothing is lost by the population statistic approach, and it
is a more natural modeling technique to apply.
DiPDE (Integro-partial differential equation with displacement)

(16) is a coupled population density equation solver that numeri-
cally computes the time evolution of the voltage density distribu-
tion of a population of neurons (23). Instead of solving one
equation for the dynamics of each neuron, this method solves a
displacement integropartial differential equation (the master
equation) for the voltage density, assuming shot noise input with
Poisson statistics. Because the dynamics of large numbers of
homogeneous neurons is reduced to a single partial differential
equation (PDE), simulations can be configured and run in a
comparatively short amount of time but agree at the level of
mean firing rates of large systems.
The speed of these simulations allows the use of statistics of

neurons in the behaving animal together with constraints of well-
measured structural data to optimize yet unknown parameters.
Fig. 3B compares the simulated output of a simplified cortical

column model using population statistic modeling in DiPDE with
the average result from 50 realizations of an LIF simulation with an

Fig. 2. Single-cell biophysical and point neuron
models. Data from (A) a fluorescently labeled excit-
atory neuron from genetically modified mouse (Rbp4-
Cre tdTomato+) and (B) an SST-labeled inhibitory
interneuron (Sst-Cre tdTomato+) (Fig. 1 A and D). A,
Upper and B, Upper show examples of VmðtÞ gener-
ated by the associated biophysical models. Data
(black) and models (red) are shown in response to
current injections (gray), with close-up views of indi-
vidual spikes superimposed. Morphological recon-
structions of the modeled cells are shown in A, Right
and B, Right, with apical dendrites colored in magenta
and other dendrites colored in blue. A, Lower and B,
Lower illustrate simpler point models (GLIF) for the
same cells, which ignore the detailed morphology
structure of the cell. Training data consist of at least
three repeats of frozen pink noise: during the fit of
the training data (black solid line), the membrane
potential (red solid line) and threshold (red dashed
line) are computed between spikes. Thus, the spiking
histories of the model and the neuron are the same.
Test data: during the testing phase, a different in-
stantiation of noise is repeated at least twice, and the
resulting spikes (black dots) are compared with the
spikes produced by the model (red dots).
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analogous parameterization. We performed exhaustive simulation
of the input–output relations of a fundamental cortical module to a
cortical column (24).
The methods of DiPDE are available as an open source soft-

ware package written in Python [alleninstitute.github.io/dipde/;
Gnu public license (GPL)] as a resource to the computational
modeling community. The package includes several quick start
examples as well as an out of the box implementation of the
cortical column model discussed above.

Predicting Optogenetic Perturbation Responses. The computational
approach of using point neuron networks, in which cellular mech-
anisms and biophysics are replaced by simple LIF dynamics, has
been successful in analyzing neural correlates of various cognitive
functions, such as decision-making (25) and working memory (26).
We adopted this approach to understand inhibitory cortical control
by refining a large-scale cortical column model proposed earlier
(24), replacing the single inhibitory interneuron cell types in the
superficial layer with three distinct cell types expressing SST, va-
soactive intestinal polypeptide (VIP), and parvalbumin (PV). The
exact structure of the superficial layer circuits is based on the
fraction of three inhibitory cell types (27) and the inhibitory con-
nectivity described in ref. 28 (Fig. 3C).
Using modified column models, we first asked how each in-

hibitory cell type modulates the spiking activity of superficial pyr-
amids by introducing excitatory currents mimicking optogenetic
stimulation. Fig. 3E shows the raster plots of superficial pyramids in
four different scenarios: control experiments without optogenetic
stimulation and simulated PV, SST, and VIP interneuron activa-
tion between 400 and 700 ms. The effect of these manipulations
(expressed as normalized firing rates of the pyramidal neurons in
Fig. 3G) reveals that increases in excitability of three classes of
inhibitory interneurons (VIP, SST, and PV) trigger a paradoxical
increase, a decrease, and no change in the excitability of pyramidal
neurons, respectively.
These results suggest that each inhibitory cell type has a unique

functional role. The disinhibition induced by elevated VIP cell
activity can result in increased sensitivity to sensory stimulus,
consistent with experimental observations (29). The strong sup-
pressive effects of SST cell activation can be useful in surround
suppression (30). The functional roles of enhanced PV cell activity
are not evident in our simulations. Instead, we note that pyramidal
cells can quickly recover from inhibition induced by PV cells, in-
dicating that PV cell mediating inhibition may be suitable for
regulating pyramidal cell activity at fine temporal scales. Indeed,
Cardin et al. (31) found that the optogenetic stimulation of PV
cells increased γ-rhythms, reflecting the fine temporal dynamics. It
should be noted that SST, PV, and VIP cells have multiple sub-
classes (3), and incorporating them into this model would
be desirable.

Biophysically Detailed Network Models. Our biophysical modeling
effort aims to further bridge the gap between experimental ob-
servables and underlying cortical computations. The development
of the model is driven by in-house electrophysiological and two-
photon calcium imaging data from functional measurements in
behaving animals. We are approaching the development of such a
complex model from two directions. From one side, we are building
a highly detailed model of the major input layer of V1 (namely,
layer 4), with the primary focus on reproducing within-layer neural
activity. From the other side, we are developing a biophysically
detailed, multilayer cortical model, with the primary focus to rec-
reate the extracellular potential recordings [local field potential
(LFP), current source density, and extracellular spikes] along the
full cortical depth. Both efforts are pursued using a common set of
simulation tools and will be merged into a single, highly realistic
cortical column.
In both directions, single-neuron representations of in vitro

characterized cells (from appropriate layers) are replicated to
describe a cortical region of 0.5 mm2 in area and 0.1 mm in
thickness for layer 4 and 0.86-mm-thick for the entire cortical

column. The former contains 10,000 neurons, and the latter
contains ∼24,500 neurons (about one-half of the biological cell
density for computational efficiency), of which 80% are excit-
atory and 20% are inhibitory. Single cells are randomly posi-
tioned in physical space within their corresponding layers and
randomly rotated along the cortical depth axis. Note that we use
multiple copies of individual biophysical neuron models from the
Allen Cell Types Database (see above). Furthermore, the data-
base growth will enable an appropriate taxonomy of cell types,
which will guide decisions on whether copies of individual cell
models are representative enough or if extragenerative steps
are required.
The connections and synaptic properties in the network models

are established following distance- and cell type-dependent rules
adopted from the literature (32–35) as well as based on in-house
data. Synaptic connections are established between neurons based
on the locations of their cell bodies, with synapses placed ran-
domly over the dendritic tree (dependent on the type of connec-
tion, such as excitatory to excitatory, inhibitory to excitatory, etc.).
The layer 4 model is meant to simulate retinotopically mapped,

visually evoked responses in V1 (Fig. 4A). For that purpose, one
may use filters that operate in visual field space and represent
responses of the LGN cells—currently, in a simple parametric
functional form (to be replaced by the more sophisticated LNP
filters described above). These filters convert movies into spike
trains according to parameterization based on in-house LGN re-
cordings, responding to local temporal increases and decreases in
brightness (“on”- and “off”-type cells). For each biophysically
detailed neuron in the layer 4 model, we choose a subset of on and
off filters to supply inputs to the cell according to published ex-
perimental data (36) as well as in-house observations. As a result,
arbitrary visual stimuli can be used as inputs to the layer 4 model.
With the feedforward LGN inputs and full recurrent connec-

tivity within layer 4, the cells in the model receive several thousand
synapses each. An essential part of the modeling process is the
adjustment of synaptic weights to obtain realistic spike rates under
condition of irregular activity within the network (i.e., avoiding
epileptic-like, population-wide oscillations). After accomplished,
initial series of simulations (Fig. 4A, Right) reproduce phenomena
observed in the animal. For example, the distribution of firing
rates in simulations is broadly consistent with the literature on V1
physiology (37) and in-house data, in that many cells remain silent
or near-silent for many stimuli (i.e., exhibiting stimulus prefer-
ence), the excitatory neurons spike at up to 10–20 Hz, and fast-
spiking inhibitory neurons tend to fire at 10–40 Hz. Simulating
visual stimulation by drifting gratings, we observe emergence of
orientation tuning (which is absent in the simple filters currently
used in this model to represent the feedforward inputs from LGN
to V1); the distribution of orientation selectivity among cells in the
model is consistent with experimental observations. The network
also possesses rich dynamical behavior, with the responses within
groups of cells following complex trajectories.
Input to the full, multilayer cortical column model (Fig. 4B) is

simulated using both local connectivity and externally sourced in-
put. For local input, the number of synaptic connections between
neural populations is determined by scaling the integrated con-
nectivity map (24) based on the fractions of short-range connec-
tions in visual cortex (38) originating from within a column of
cortical tissue. Within a layer, cells are connected with the addition
of periodic boundary conditions. For interlayer connections, the
postsynaptic neurons are connected with uniform probability.
External input into the column is described by two mechanisms:

LGN-like input and input representing long-range connections.
The LGN input is modeled by spike trains into layer 4 excitatory
cells as experimentally obtained in vivo during the presentation of
visual stimuli (e.g., drifting grating at 2 Hz). Long-range connec-
tions are currently modeled by Poisson background spike trains
but planned to be replaced by more meaningful dynamics from
other brain areas using simpler models (i.e., LIF and statistical
population methods).
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One of the main purposes of the multilayer column model is to
link biophysical computation with experimental observables, such as
extracellular voltage (Ve) from silicon depth recordings, which have
low-frequency components that are known as the LFP. The Ve
generated by transmembrane currents is computed along the col-
umn depth axis at locations 20 μm apart, corresponding to a virtual
multielectrode array inserted vertically into the column’s center. The
calculations are performed using the line source approximation
method (39, 40) for the solution of Laplace equation governing Ve
distribution assuming a uniform conductivity (0.3 mS/mm) (Fig. 4B).
The synaptic weights and rate of background activity match firing

rates as measured in vivo for each population, whereas the synaptic
weights from local sources are tuned to find the network regime
consistent with spike rates of evoked activity. Preliminary simulations
show that, during otherwise irregular activity, excitatory neurons
respond to LGN input with increased spiking up to 10 Hz, whereas
inhibitory cells may reach 20 Hz (Fig. 4B). The magnitudes and
overall dynamics of the simulated laminar Ve in response to drifting
gratings are consistent with experimental recordings reported in the
literature (37) as well as in-house data. The modeled Ve represents
both spiking activity from cells with somata near the recording sites
and slower activity (i.e., the LFP) coordinated across longer dis-
tances frommore distant populations. Thus, such biophysical models
are uniquely positioned to link between experimental observables,
underlying biophysical processing and neural computation.
MindScope system modeling relies heavily on the experimental

characterization of the cortex, and as such, the success or failure
will be framed very much by what is feasible experimentally. For
example, characterization of connection probabilities and synaptic
strengths between various cell types in the cortex is very labor-
expensive. If we follow our transcriptomic taxonomy of V1 neurons
with 42 cell types (3), we will need to characterize 422 = 1,764
connection types, including their dependence on distance between
cell bodies, layer location, etc., which will be challenging. A parallel
approach is to reduce the large diversity of cell types into a small
number of functional groups (e.g., one excitatory cell type per layer
and a few layer-independent inhibitory cell types). This approach
will require difficult tradeoffs regarding data, and assumptions will
have to be made when building models. However, in this scenario
the models will potentially have the biggest impact: in identifying
crucial unconstrained aspects of the system on which experimental
efforts could further focus. Another significant challenge is in
creating an integrated multiresolution model as described above.

Models of Cortical Computations
In addition to mechanistic models that are fit with neural data to
provide generative predictions of neural response, we are con-
structing higher-level computational models with task-oriented
constraints. These constraints assign a computational role to the
network, and training networks toward these tasks provide
predictions of neural response and the “features” encoded by
cortical activity.
The task of object recognition provides the first constraint. Tak-

ing cues from biology, the most powerful computational algorithms
for this task are layered artificial neural networks. These networks
use a feedforward structure composed of “simple” and “complex”
feature summation and pooling units. Examples include HMAX
(41, 42) and deep convolutional neural networks. It is not clear
whether the mouse has an analog of the primate ventral stream as
predicted by HMAX (Hierarchical Model and X). This latter
question is important, and its answer will define the complexity and
feasibility of this approach. The mouse visual system appears to
have a broader anatomical structure than the macaque and there-
fore, may process visual information in very different ways.
The second constraint is the principle of sparse or efficient

coding. Sparse coding models have been successful in describing
the character of responses observed in primate V1. One can also
use this principle as a means of understanding the lateral connec-
tivity and feedback observed in cortex in addition to the feedforward
computation described above. Importantly, although successful at
predicting response properties, naive predictions for connectivity

Fig. 3. Population responses in LGN and V1 models. (A) Comparison of the
receptive field of a mouse LGN cell using the mean firing rate. At one of
16 × 8 spatial pixels, (A, Upper) a black or (A, Lower) white square was flashed
onto an otherwise gray screen. Column 1 shows the spatial receptive field
recorded during the test period: a cell with distinct (Upper) off and (Lower)
on subfields. Column 2 shows spatial receptive field recorded during the
training period from which the models are constructed. The explained
variance between test and training sets is R2 = 0.51. In column 3, the holdout
set responses of a single LNP model trained barely reconstruct the visual
stimulus (R2 = 0.02), whereas a cascade model with multiple LNP channels in
column 4 has a vastly better performance with R2 = 0.50. (B) Schematic of a
simplified cortical column model [in the work by Potjans and Diesmann
(24)]. Mean firing rate dynamics of an LIF simulation of the cortical column
(noisy traces) is compared with the coupled population density equation
solver DiPDE (smooth traces) for 2 × 4 populations of (D) excitatory and
(F) inhibitory neurons (one each in four layers). At 100 ms, one layer 4
subpopulation is driven with an external sinusoidal input (pictured above),
simulating LGN input. This simulation results in both linear and nonlinear
mean firing rate responses of various populations. The two modeling ap-
proaches, DiPDE and LIF simulations, closely agree. (C) Schematic of the cell
type-specific connectivity among inhibitory neurons used in the superficial
layer of a cortical column model (Pyr, pyramidal neurons). (E) Action po-
tentials of pyramidal neurons in superficial layers in control experiments
and under interneuron expressing genes for PV, SST, and VIP cell activation
conditions. Arrows indicate the period during which one of three inhibitory
populations was activated. (G) The normalized firing rate (and SE) of the
pyramidal neurons. *A significant difference between control and the
specific simulation conditions (CON, control).
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from such models often contradict what is known about biological
connectivity, and therefore, there are important theoretical prob-
lems to tackle before we can rely on this method for defining our
models of computation.
We are developing and fitting these models with a combi-

nation of mouse anatomy and neurophysiology. The necessary
neurophysiological data comes from the Allen Brain Observatory
(ABO, observatory.brain-map.org/visualcoding), an in-house effort
to record under highly standardized conditions the dynamics of
thousands of genetically identified neurons in visual cortex in
running mice trained to respond to visual stimuli. The first ABO
dataset is a survey of neural responses in visual regions [to begin
with, V1, lateromedial (LM), anterolateral (AL), and postero-
medial (PM)] to an array of stimuli: drifting and stationary grat-
ings, locally sparse noise, natural images, and natural movies. The

recording modality is two-photon calcium imaging from mice who
are head-fixed but free to run on a disk, providing passive viewing
from a “behaving” animal (Fig. 5A). This design presents its own
challenge, because one must disentangle the effects of visual re-
sponse from, for example, running modulation. Later versions of
ABO will include detection and discrimination tasks. From the
initial data, we are constructing a response model (e.g., receptive
fields) for neurons in the visual pathway. Example receptive field
and tuning curve are shown in Fig. 5B.
These models of computation exist at the coarsest, highest level

of description, whereas the other models described in this paper
are at finer detail and describe specific regions and circuits. Per-
haps the most challenging problem is to relate these models across
scales and levels of description, so that biophysical models can
usefully inform the models of computation. This approach is

Fig. 4. Large-scale biophysical simulations of mouse
V1. (A) The layer 4 model and simulations. The LGN
cells, supplying visual input to layer 4, are modeled as
filters that produce spike trains in response to movies
in visual space. For each neuron in the layer 4 model, a
subset of on and off filters is chosen, and the spike
trains generated by these filters are impinging onto
the V1 cell; this situation is illustrated for one of the
layer 4 neurons. The biophysically detailed model
consists of 10,000 neurons; only 1% of these are
shown. The simulated neuronal activity in response to
visual stimulation with a drifting grating (between 0.5
and 2.5 s) is shown in Right. The first 8,000 neurons
are pyramidal cells, and the rest are fast-spiking in-
terneurons. Cells are grouped together according to
their orientation preference of the drifting grating.
(B, Left) Multilayer network of 24,500 interconnected,
biophysically detailed neurons positioned in physical
space and color-coded by layer and type. (B, Center)
Population rasters and the corresponding spike rates
(red lines, excitatory; blue lines, inhibitory neurons) in
response to visual stimulus (drifting grating at 2 Hz).
(B, Right) The laminar distribution of the simulated
extracellular potential (black traces indicate Ve as a
function of time and specific depth; color indicates
depth Ve) in response to neural activity.

Receptive Fields

Tuning Curves

Stimuli

Behavior

A B

Fig. 5. The Allen Brain Observatory. This in-house
project is producing neuronal activity data from ge-
netically identified neuronal populations in the behav-
ing mouse using two-photon calcium imaging. (A)
Responses are recorded to a variety of visual stimuli,
including gratings, sparse noise, natural images, and
natural movies, and across multiple regions, layers, and
genetically defined cell types. (B) Example single-neuron
response properties. Upper shows receptive fields from
locally sparse noise separately for on (white) and off
(black) stimuli (Fig. 3A). Lower shows example tuning
curves for orientation and spatial frequency obtained
from such imaging (in units of DF/F) in response to ori-
ented gratings (cpd, cycles per degree; DF/F, relative
change in fluorescence).

Hawrylycz et al. PNAS | July 5, 2016 | vol. 113 | no. 27 | 7343

N
EU

RO
SC

IE
N
CE

CO
LL
O
Q
U
IU
M

PA
PE

R

http://observatory.brain-map.org/visualcoding


daunting for a number of reasons, including the problem of re-
lating different mechanistic descriptions of neural response.

Discussion
A number of models have been suggested to explain how funda-
mental neuronal stimulus response properties (such as orientation
tuning) arise, with the most prominent one based on the seminal
work by Hubel and Wiesel (43). Since then, many more classes of
theories have been proposed, arguing that orientation tuning arises
primarily from intracortical networks, a combination of feedforward
and cortical inhibitory mechanisms, and in particular, feedforward
mechanisms that include nonlinearities of individual cell types.
However, how many of these theories are plausible given what we
know about the biophysical properties of synapses and neurons in
V1?Which of these postulations are most feasible and robust? These
questions can be extended to even more conceptual models of visual
processing and object recognition (41, 42), where it remains unknown
which aspects of the suggested computations can be realized based
on the detailed biophysics of neurons and networks. In this
context, we plan to use biophysically realistic simulations to test
many of these hypotheses and develop additional ones to help bridge
the gap between higher-level functioning of the cortex and its bio-
physical surrogates. The project proposes to infer the structure and
function of recurrent connectivity as well as feedback from higher
areas and estimate the computational role that each area plays in the
visual circuit.
The modeling part of MindScope shares some of the same goals

as the Blue Brain Project/Human Brain Project at the EPFL in

Switzerland (15). Their focus is on reproducing the firing behavior
of rat somatosensory cortex in both slice and the animal using
detailed biophysical models. They seek to incorporate all known
biophysical and biochemical properties of brains (including detailed
channel kinetics, vascularization, and so on) to explain rat behavior.
Our goals are both more limited and more focused on a set of
experimentally guided questions using a three levels of granularity
model to isolate the relevant variables needed to understand any
one specific phenomenon. At the same time, unlike the Blue Brain
Project, MindScope is producing complete, free, and publicly ac-
cessible neuroanatomical, molecular, and physiological datasets
(www.brain-map.org).
In summary, the overarching goal of MindScope is to understand

the operations and the flexibility of cortical tissue in the mouse by
comprehensively recording and analyzing cellular-level cortical
responses. The project is carried out using behaving mice trained to
perform simple visual discrimination tasks, with an integrated
computational modeling effort, and using a large scale, team-based
approach and open science.
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